Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries
Yichao Yan
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorDr. David B. Vogt
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorDr. Thomas P. Vaid
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorProf. Matthew S. Sigman
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Prof. Melanie S. Sanford
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorYichao Yan
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorDr. David B. Vogt
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorDr. Thomas P. Vaid
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorProf. Matthew S. Sigman
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Prof. Melanie S. Sanford
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109 USA
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, IL, 60439 USA
Search for more papers by this authorGraphical Abstract
Abstract
This report describes the design of diaminocyclopropenium-phenothiazine hybrid catholytes for non-aqueous redox flow batteries. The molecules are synthesized in a rapid and modular fashion by appending a diaminocyclopropenium (DAC) substituent to the nitrogen of the phenothiazine. Combining a versatile C-N coupling protocol (which provides access to diverse derivatives) with computation and structure-property analysis enabled the identification of a catholyte that displays stable two-electron cycling at potentials of 0.64 and 1.00 V vs. Fc/Fc+ as well as high solubility in all oxidation states (≥0.45 M in TBAPF6/MeCN). This catholyte was deployed in a high energy density two-electron RFB, exhibiting >90 % capacity retention over 266 hours of flow cell cycling at >0.5 M electron concentration.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202111939-sup-0001-misc_information.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Rugolo, M. J. Aziz, Energy Environ. Sci. 2012, 5, 7151–7160.
- 2C. J. Barnhart, M. Dale, A. R. Brandt, S. M. Benson, Energy Environ. Sci. 2013, 6, 2804–2810.
- 3X. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, V. Sprenkle, ACS Energy Lett. 2017, 2, 2187–2204.
- 4X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 2014, 26, 7649–7653.
- 5J. Winsberg, T. Hagemann, S. Muench, C. Friebe, B. Häupler, T. Janoschka, S. Morgenstern, M. D. Hager, U. S. Schubert, Chem. Mater. 2016, 28, 3401–3405.
- 6C. Zhang, L. Zhang, Y. Ding, S. Peng, X. Guo, Y. Zhao, G. He, G. Yu, Energy Storage Mater. 2018, 15, 324–350.
- 7G. Kwon, S. Lee, J. Hwang, H.-S. Shim, B. Lee, M. H. Lee, Y. Ko, S.-K. Jung, K. Ku, J. Hong, K. Kang, Joule 2018, 2, 1771–1782.
- 8J. Zhang, Z. Yang, I. A. Shkrob, R. S. Assary, S. on Tung, B. Silcox, W. Duan, J. Zhang, C. C. Su, B. Hu, B. Pan, C. Liao, Z. Zhang, W. Wang, L. A. Curtiss, L. T. Thompson, X. Wei, L. Zhang, Adv. Energy Mater. 2017, 7, 1701272.
- 9L. E. VanGelder, E. Schreiber, E. M. Matson, J. Mater. Chem. A 2019, 7, 4893–4902.
- 10L. E. VanGelder, A. M. Kosswattaarachchi, P. L. Forrestel, T. R. Cook, E. M. Matson, Chem. Sci. 2018, 9, 1692–1699.
- 11J. A. Kowalski, M. D. Casselman, A. Preet Kaur, J. D. Milshtein, C. F. Elliott, S. Modekrutti, N. Harsha Attanayake, N. Zhang, S. R. Parkin, C. Risko, F. R. Brushett, S. A. Odom, J. Mater. Chem. A 2017, 5, 24371–24379.
- 12I. L. Escalante-García, J. S. Wainright, L. T. Thompson, R. F. Savinell, J. Electrochem. Soc. 2015, 162, A363–A372.
- 13E. V. Carino, J. Staszak-Jirkovsky, R. S. Assary, L. A. Curtiss, N. M. Markovic, F. R. Brushett, Chem. Mater. 2016, 28, 2529–2539.
- 14B. Silcox, J. Zhang, I. A. Shkrob, L. Thompson, L. Zhang, J. Phys. Chem. C 2019, 123, 16516–16524.
- 15G. Kwon, K. Lee, M. H. Lee, B. Lee, S. Lee, S.-K. Jung, K. Ku, J. Kim, S. Y. Park, J. E. Kwon, K. Kang, Chem 2019, 5, 2642–2656.
- 16C. S. Sevov, S. L. Fisher, L. T. Thompson, M. S. Sanford, J. Am. Chem. Soc. 2016, 138, 15378–15384.
- 17W. Duan, J. Huang, J. A. Kowalski, I. A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J. D. Milshtein, B. Li, C. Liao, Z. Zhang, W. Wang, J. Liu, J. S. Moore, F. R. Brushett, L. Zhang, X. Wei, ACS Energy Lett. 2017, 2, 1156–1161.
- 18J. Huang, L. Cheng, R. S. Assary, P. Wang, Z. Xue, A. K. Burrell, L. A. Curtiss, L. Zhang, Adv. Energy Mater. 2015, 5, 1401782.
- 19C. Zhang, Y. Qian, Y. Ding, L. Zhang, X. Guo, Y. Zhao, G. Yu, Angew. Chem. Int. Ed. 2019, 58, 7045–7050; Angew. Chem. 2019, 131, 7119–7124.
- 20C. Zhang, Z. Niu, Y. Ding, L. Zhang, Y. Zhou, X. Guo, X. Zhang, Y. Zhao, G. Yu, Chem 2018, 4, 2814–2825.
- 21K. H. Hendriks, C. S. Sevov, M. E. Cook, M. S. Sanford, ACS Energy Lett. 2017, 2, 2430–2435.
- 22B. Hu, T. L. Liu, J. Energy Chem. 2018, 27, 1326–1332.
- 23J. Chai, A. Lashgari, X. Wang, C. K. Williams, J. “Jimmy” Jiang, J. Mater. Chem. A 2020, 8, 15715–15724.
- 24T. P. Vaid, M. S. Sanford, Chem. Commun. 2019, 55, 11037–11040.
- 25L. Zhang, Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, X. Guo, W. Wang, G. Yu, Nat. Commun. 2020, 11, 3843.
- 26J. D. Milshtein, A. P. Kaur, M. D. Casselman, J. A. Kowalski, S. Modekrutti, P. L. Zhang, N. Harsha Attanayake, C. F. Elliott, S. R. Parkin, C. Risko, F. R. Brushett, S. A. Odom, Energy Environ. Sci. 2016, 9, 3531–3543.
- 27A. P. Kaur, O. C. Harris, N. H. Attanayake, Z. Liang, S. R. Parkin, M. H. Tang, S. A. Odom, Chem. Mater. 2020, 32, 3007–3017.
- 28N. H. Attanayake, J. A. Kowalski, K. V. Greco, M. D. Casselman, J. D. Milshtein, S. J. Chapman, S. R. Parkin, F. R. Brushett, S. A. Odom, Chem. Mater. 2019, 31, 4353–4363.
- 29S. Ergun, C. F. Elliott, A. Preet Kaur, S. R. Parkin, S. A. Odom, Chem. Commun. 2014, 50, 5339–5341.
- 30A. Preet Kaur, S. Ergun, C. F. Elliott, S. A. Odom, J. Mater. Chem. A 2014, 2, 18190–18193.
- 31C. F. Elliott, K. E. Fraser, S. A. Odom, C. Risko, J. Phys. Chem. A 2021, 125, 272–278.
- 32N. Harsha Attanayake, Z. Liang, Y. Wang, A. Preet Kaur, S. R. Parkin, J. K. Mobley, R. H. Ewoldt, J. Landon, S. A. Odom, Mater. Adv. 2021, 2, 1390–1401.
- 33Y. Yan, S. G. Robinson, T. P. Vaid, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2021, https://doi.org/10.1021/jacs.1c07237.
10.1021/jacs.1c07237 Google Scholar
- 34M. Park, J. Ryu, W. Wang, J. Cho, Nat. Rev. Mater. 2016, 2, 1–18.
- 35C. S. Sevov, S. K. Samaroo, M. S. Sanford, Adv. Energy Mater. 2017, 7, 1602027.
- 36S. G. Robinson, Y. Yan, K. H. Hendriks, M. S. Sanford, M. S. Sigman, J. Am. Chem. Soc. 2019, 141, 10171–10176.
- 37Y. Yan, S. G. Robinson, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 15301–15306.
- 38K. H. Hendriks, S. G. Robinson, M. N. Braten, C. S. Sevov, B. A. Helms, M. S. Sigman, S. D. Minteer, M. S. Sanford, ACS Cent. Sci. 2018, 4, 189–196.
- 39M. Kuroboshi, T. Yamamoto, H. Tanaka, Synlett 2013, 24, 197–200.
- 40J. Chai, A. Lashgari, Z. Cao, C. K. Williams, X. Wang, J. Dong, J. “Jimmy” Jiang, ACS Appl. Mater. Interfaces 2020, 12, 15262–15270.
- 41The 4-DMPP cycling data shows an uptick in discharge capacity at ≈40 cycles, which was observed across two repeats of this experiment (see Figure S11). This may be due to cell equilibration, but we do not have a complete explanation at this time.
- 42H. Huang, Z. M. Strater, M. Rauch, J. Shee, T. J. Sisto, C. Nuckolls, T. H. Lambert, Angew. Chem. Int. Ed. 2019, 58, 13318–13322; Angew. Chem. 2019, 131, 13452–13456.
- 43K. Gong, Q. Fang, S. Gu, S. F. Y. Li, Y. Yan, Energy Environ. Sci. 2015, 8, 3515–3530.
- 44X. Wei, L. Cosimbescu, W. Xu, J. Z. Hu, M. Vijayakumar, J. Feng, M. Y. Hu, X. Deng, J. Xiao, J. Liu, V. Sprenkle, W. Wang, Adv. Energy Mater. 2015, 5, 1400678.
- 45X. Wei, W. Duan, J. Huang, L. Zhang, B. Li, D. Reed, W. Xu, V. Sprenkle, W. Wang, ACS Energy Lett. 2016, 1, 705–711.
- 46R. S. Nicholson, Anal. Chem. 1965, 37, 1351–1355.
- 47While the maximum solubility of 4-DMPP++ is 0.45 M (electron concentration=0.9 M) in 0.5 M TBAPF6/MeCN, the symmetrical battery setup also requires the addition of 0.6 M of 5 to the electrolyte solution. To minimize the impact of the viologen on the 4-DMPP solubility (related to the common ion effect) and to minimize the viscosity of the resulting solution, we chose to use 0.3 M 4-DMPP (0.6 M electron concentration) in this experiment.
- 48Since this battery runs for a relatively long time (>266 hours), the solvent slowly evaporates and bubbles develop in the battery system, disturbing the charging and discharging process and thus causing fluctuations in efficiency.