Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives
Shahid Zaman
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorLei Huang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorAbdoulkader Ibro Douka
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorHuan Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorBo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorShahid Zaman
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorLei Huang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorAbdoulkader Ibro Douka
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorHuan Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorBo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorGraphical Abstract
Abstract
Fuel cells are an incredibly powerful renewable energy technology, but their broad applications remains lagging because of the high cost and poor reliability of cathodic electrocatalysts for the oxygen reduction reaction (ORR). This review focuses on the recent progress of ORR electrocatalysts in fuel cells. More importantly, it highlights the fundamental problems associated with the insufficient activity translation from rotating disk electrode to membrane electrode assembly in the fuel cells. Finally, for the atomic-level in-depth information on ORR catalysts in fuel cells, potential perspectives are suggested, including large-scale preparation, unified assessment criteria, advanced interpretation techniques, advanced simulation and artificial intelligence. This review aims to provide valuable insights into the fundamental science and technical engineering for efficient ORR electrocatalysts in fuel cells.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. K. Debe, Nature 2012, 486, 43–51.
- 2Y. Shao, J. P. Dodelet, G. Wu, P. Zelenay, Adv. Mater. 2019, 31, 1807615–1807622.
- 3I. E. L. Stephens, J. Rossmeisl, I. Chorkendorff, Science 2016, 354, 1378–1379.
- 4G. Shen, J. Liu, H. B. Wu, P. Xu, F. Liu, C. Tongsh, K. Jiao, J. Li, M. Liu, M. Cai, J. P. Lemmon, G. Soloveichik, H. Li, J. Zhu, Y. Lu, Nat. Commun. 2020, 11, 1191–1200.
- 5R. Lin, X. Cai, H. Zeng, Z. Yu, Adv. Mater. 2018, 30, 1705332–1705338.
- 6M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594–3657.
- 7Y. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Adv. Mater. 2020, 2000381–2000417.
- 8Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 2020, 49, 3484–3524.
- 9S. T. Thompson, D. Papageorgopoulos, Nat. Catal. 2019, 2, 558–561.
- 10D. D. Papageorgopoulos, U.S Department of Energy, 2019.
- 11A. Holewinski, J.-C. Idrobo, S. Linic, Nat. Chem. 2014, 6, 828–834.
- 12M. Li, X. Bi, R. Wang, Y. Li, G. Jiang, L. Li, C. Zhong, Z. Chen, J. Lu, Matter 2020, 2, 32–49.
- 13T. Ioroi, Z. Siroma, S.-i. Yamazaki, K. Yasuda, Adv. Energy Mater. 2019, 9, 1801284.
- 14Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168–2201.
- 15A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 2011, 4, 1238–1254.
- 16Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 17A. Ohma, T. Mashio, K. Sato, H. Iden, Y. Ono, K. Sakai, K. Akizuki, S. Takaichi, K. Shinohara, Electrochim. Acta 2011, 56, 10832–10841.
- 18K. Ehelebe, D. Seeberger, M. T. Y. Paul, S. Thiele, K. J. J. Mayrhofer, S. Cherevko, J. Electrochem. Soc. 2019, 166, F1259.
- 19S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-j. Liu, J. Mater. Chem. A 2017, 5, 1808–1825.
- 20X. X. Wang, M. T. Swihart, G. Wu, Nat. Catal. 2019, 2, 578–589.
- 21A. V. Virkar, Y. Zhou, J. Electrochem. Soc. 2007, 154, B540.
- 22L. Castanheira, W. O. Silva, F. H. B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal. 2015, 5, 2184–2194.
- 23H. Y. Kim, J. M. Kim, Y. Ha, J. Woo, A. Byun, T. J. Shin, K. H. Park, H. Y. Jeong, H. Kim, J. Y. Kim, S. H. Joo, ACS Catal. 2019, 9, 11242–11254.
- 24W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S. Chen, X. Qi, Z. Wei, J. Am. Chem. Soc. 2015, 137, 5414–5420.
- 25X. L. Tian, Y. Y. Xu, W. Zhang, T. Wu, B. Y. Xia, X. Wang, ACS Energy Lett. 2017, 2, 2035–2043.
- 26G. Wang, Z. Yang, Y. Du, Y. Yang, Angew. Chem. Int. Ed. 2019, 58, 15848–15854; Angew. Chem. 2019, 131, 15995–16001.
- 27S. Xu, Y. Kim, J. Park, D. Higgins, S.-J. Shen, P. Schindler, D. Thian, J. Provine, J. Torgersen, T. Graf, T. D. Schladt, M. Orazov, B. H. Liu, T. F. Jaramillo, F. B. Prinz, Nat. Catal. 2018, 1, 624–630.
- 28K. Jiang, D. Zhao, S. Guo, X. Zhang, X. Zhu, J. Guo, G. Lu, X. Huang, Sci. adv. 2017, 3, e1601705.
- 29Y. Chen, T. Cheng, W. A. Goddard III, J. Am. Chem. Soc. 2020, 142, 8625–8632.
- 30M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard III, Y. Huang, X. Duan, Science 2016, 354, 1414–1419.
- 31J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552–556.
- 32S. J. Hwang, S. K. Kim, J. G. Lee, S. C. Lee, J. H. Jang, P. Kim, T. H. Lim, Y. E. Sung, S. J. Yoo, J. Am. Chem. Soc. 2012, 134, 19508–19511.
- 33X. Tian, X. Zhao, Y. Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, B. Y. Xia, Science 2019, 366, 850–856.
- 34V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 2007, 315, 493–497.
- 35P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. J. N. c. Ogasawara, Nat. Chem. 2010, 2, 454–460.
- 36X. Shen, S. Dai, Y. Pan, L. Yao, J. Yang, X. Pan, J. Zeng, Z. Peng, ACS Catal. 2019, 9, 11431–11437.
- 37M. Luo, S. Guo, Nat. Rev. Mater. 2017, 2, 17059.
- 38Y. J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, Chem. Rev. 2015, 115, 3433–3467.
- 39J. Pan, X. L. Tian, S. Zaman, Z. Dong, H. Liu, H. S. Park, B. Y. Xia, Batteries Supercaps 2019, 2, 336–347.
- 40S. Zhang, Y. Hao, D. Su, V. V. Doan-Nguyen, Y. Wu, J. Li, S. Sun, C. B. Murray, J. Am. Chem. Soc. 2014, 136, 15921–15924.
- 41L. Bu, Y. Feng, J. Yao, S. Guo, J. Guo, X. Huang, Nano Res. 2016, 9, 2811–2821.
- 42C. Zhang, W. Sandorf, Z. Peng, ACS Catal. 2015, 5, 2296–2300.
- 43L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, Nat. Commun. 2016, 7, 11850.
- 44S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng, Z. Quan, Adv. Mater. 2019, 31, 1903683–1903689.
- 45J. Li, Z. Xi, Y. T. Pan, J. S. Spendelow, P. N. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y. S. Kim, P. Zhang, S. Sun, J. Am. Chem. Soc. 2018, 140, 2926–2932.
- 46L. Cao, Z. Zhao, Z. Liu, W. Gao, S. Dai, J. Gha, W. Xue, H. Sun, X. Duan, X. Pan, T. Mueller, Y. Huang, Matter 2019, 1, 1567–1580.
- 47S. I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H. C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett. 2013, 13, 3420–3425.
- 48Y. K. Chen Chen, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339–1343.
- 49P. M. M. Escudero-Escribano, M. H. Hansen, U. G. Vej-Hansen, A. Velázquez-Palenzuela, V. Tripkovic, J. Schiøtz, J. Rossmeisl, I. E. L. Stephens, I. Chorkendorff, Science 2016, 352, 73–76.
- 50X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. J. S. Wang, Science 2015, 348, 1230–1234.
- 51B. N. Wanjala, B. Fang, J. Luo, Y. Chen, J. Yin, M. H. Engelhard, R. Loukrakpam, C. J. Zhong, J. Am. Chem. Soc. 2011, 133, 12714–12727.
- 52Z. Meng, F. Xiao, Z. Wei, X. Guo, Y. Zhu, Y. Liu, G. Li, Z.-Q. Yu, M. Shao, W.-Y. Wong, Nano Res. 2019, 12, 2954–2959.
- 53T. Y. Yoo, J. M. Yoo, A. K. Sinha, M. S. Bootharaju, E. Jung, H. S. Lee, B.-H. Lee, J. Kim, W. H. Antink, Y. M. Kim, J. Lee, E. Lee, D. W. Lee, S.-P. Cho, S. J. Yoo, Y.-E. Sung, T. Hyeon, J. Am. Chem. Soc. 2020, 142, 14190–14200.
- 54C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Nat. Mater. 2013, 12, 765–771.
- 55X. X. Wang, S. Hwang, Y. T. Pan, K. Chen, Y. He, S. Karakalos, H. Zhang, J. S. Spendelow, D. Su, G. Wu, Nano Lett. 2018, 18, 4163–4171.
- 56W. Zhao, Y. Ye, W. Jiang, J. Li, H. Tang, J. Hu, L. Du, Z. Cui, S. Liao, J. Mater. Chem. A 2020, 8, 15822–15828.
- 57D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruna, Nat. Mater. 2013, 12, 81–87.
- 58Z. Wang, X. Yao, Y. Kang, L. Miao, D. Xia, L. Gan, Adv. Funct. Mater. 2019, 29, 19029287–19029295.
- 59Q. Wang, Z. L. Zhao, Z. Zhang, T. Feng, R. Zhong, H. Xu, S. T. Pantelides, M. Gu, Adv. Sci. 2020, 7, 1901279–1901286.
- 60J. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, S. Sun, Joule 2019, 3, 124–135.
- 61T. Wang, J. Liang, Z. Zhao, S. Li, G. Lu, Z. Xia, C. Wang, J. Luo, J. Han, C. Ma, Y. Huang, Q. Li, Adv. Energy Mater. 2019, 9, 1803771–1803778.
- 62J. Liang, Z. Zhao, N. Li, X. Wang, S. Li, X. Liu, T. Wang, G. Lu, D. Wang, B. J. Hwang, Y. Huang, D. Su, Q. Li, Adv. Energy Mater. 2020, 10, 2000179–2000187.
- 63A. A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J. C. Meier, S. O. Klemm, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2012, 51, 12613–12615; Angew. Chem. 2012, 124, 12782–12785.
- 64X. Liu, J. Chen, G. Liu, L. Zhang, H. Zhang, B. Yi, J. Power Sources 2010, 195, 4098–4103.
- 65S. G. Rinaldo, J. Stumper, M. Eikerling, J. Phys. Chem. C 2010, 114, 5773–5785.
- 66J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Science 2007, 315, 220–222.
- 67X. Tong, J. Zhang, G. Zhang, Q. Wei, R. Chenitz, J. P. Claverie, S. Sun, Chem. Mater. 2017, 29, 9579–9587.
- 68L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J. Y. Ma, D. Su, X. Huang, Science 2016, 354, 1410–1414.
- 69X. Tan, S. Prabhudev, A. Kohandehghan, D. Karpuzov, G. A. Botton, D. Mitlin, ACS Catal. 2015, 5, 1513–1524.
- 70K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W.-F. Chen, P. Liu, R. R. Adzic, Nat. Commun. 2012, 3, 1115–1123.
- 71M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, J. Y. Ma, F. Lin, D. Su, G. Lu, S. Guo, Nature 2019, 574, 81–85.
- 72Q. Liu, Y. Li, L. Zheng, J. Shang, X. Liu, R. Yu, J. Shui, Adv. Energy Mater. 2020, 10, 2000689–2000696.
- 73Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780–786.
- 74Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, B. Y. Xia, Adv. Funct. Mater. 2020, 30, 1906081–1906088.
- 75A. I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan, H. Liu, M. A. Salam, B. Y. Xia, Adv. Mater. 2020, 32, 2002170–2002177.
- 76H. Zhang, W. Xia, H. Shen, W. Guo, Z. Liang, K. Zhang, Y. Wu, B. Zhu, R. Zou, Angew. Chem. Int. Ed. 2020, 59, 1871–1877; Angew. Chem. 2020, 132, 1887–1893.
- 77K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, Adv. Mater. 2020, 32, 2002292–2002297.
- 78K. Zeng, X. Zheng, C. Li, J. Yan, J. H. Tian, C. Jin, P. Strasser, R. Yang, Adv. Funct. Mater. 2020, 30, 2000503–2000525.
- 79J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102–10120; Angew. Chem. 2015, 127, 10240–10259.
- 80L. Du, V. Prabhakaran, X. Xie, S. Park, Y. Wang, Y. Shao, Adv. Mater. 2020, 32, 1908232–1908249.
- 81P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding, C. Li, D. Zhao, Z. Qian, Z. Zhang, L. Zhang, L. Yin, Nat. Commun. 2020, 11, 1576.
- 82M. Tavakkoli, E. Flahaut, P. Peljo, J. Sainio, F. Davodi, E. V. Lobiak, K. Mustonen, E. I. Kauppinen, ACS Catal. 2020, 10, 4647–4658.
- 83G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1907399–1907406.
- 84S. Wang, L. Shang, L. Li, Y. Yu, C. Chi, K. Wang, J. Zhang, R. Shi, H. Shen, G. I. Waterhouse, S. Liu, J. Tian, T. Zhang, H. Liu, Adv. Mater. 2016, 28, 8379–8387.
- 85X. Wang, Y. Jia, X. Mao, D. Liu, W. He, J. Li, J. Liu, X. Yan, J. Chen, L. Song, A. Du, X. Yao, Adv. Mater. 2020, 32, 2000966–2000974.
- 86G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443–447.
- 87J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G. E. Sterbinsky, Z. Feng, D. Su, K. L. More, G. Wang, Z. Wang, G. Wu, Nat. Catal. 2018, 1, 935–945.
- 88W. Zang, Z. Kou, S. J. Pennycook, J. Wang, Adv. Energy Mater. 2020, 10, 1903181–1903188.
- 89B. Lu, Q. Liu, S. Chen, ACS Catal. 2020, 10, 7584–7618.
- 90H. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339–348.
- 91H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479–484.
- 92C. Tang, Y. Jiao, B. Shi, J.-N. Liu, Z. Xie, X. Chen, Q. Zhang, S.-Z. Qiao, Angew. Chem. Int. Ed. 2020, 59, 9171–9176; Angew. Chem. 2020, 132, 9256–9261.
- 93X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259–268.
- 94H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong, B. Zhang, Sci. Rep. 2013, 3, 1765.
- 95X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, G. Wu, Adv. Mater. 2018, 30, 1706758–1706768.
- 96G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem. 2012, 4, 310–316.
- 97Q. L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 2013, 135, 10210–10213.
- 98B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 99X. Zhou, J. Qiao, L. Yang, J. Zhang, Adv. Energy Mater. 2014, 4, 1301523–1301547.
- 100S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593–5597.
- 101J. Shui, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129.
- 102K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760–764.
- 103D. H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361–365.
- 104T. Zhou, Y. Du, S. Yin, X. Tian, H. Yang, X. Wang, B. Liu, H. Zheng, S. Qiao, R. Xu, Energy Environ. Sci. 2016, 9, 2563–2570.
- 105Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394–4403.
- 106C. Tang, Q. Zhang, Adv. Mater. 2017, 29, 1604103–1604112.
- 107U. Martinez, J. H. Dumont, E. F. Holby, K. Artyushkova, G. M. Purdy, A. Singh, N. H. Mack, P. Atanassov, D. A. Cullen, K. L. More, M. Chhowalla, P. Zelenay, A. M. Dattelbaum, A. D. Mohite, G. Gupta, Sci. Adv. 2016, 2, e1501178.
- 108Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 2010, 39, 2184–2202.
- 109F. Dionigi, C. C. Weber, M. Primbs, M. Gocyla, A. M. Bonastre, C. Spori, H. Schmies, E. Hornberger, S. Kuhl, J. Drnec, M. Heggen, J. Sharman, R. E. Dunin-Borkowski, P. Strasser, Nano Lett. 2019, 19, 6876–6885.
- 110W. Fang, L. Huang, S. Zaman, Z. Wang, Y. Han, B. Y. Xia, Chem. Res. Chin. Univ. 2020, 36, 611–621.
- 111Z. Kong, Y. Maswadeh, J. A. Vargas, S. Shan, Z. P. Wu, H. Kareem, A. C. Leff, D. T. Tran, F. Chang, S. Yan, S. Nam, X. Zhao, J. M. Lee, J. Luo, S. Shastri, G. Yu, V. Petkov, C. J. Zhong, J. Am. Chem. Soc. 2020, 142, 1287–1299.
- 112R. Chattot, O. Le Bacq, V. Beermann, S. Kuhl, J. Herranz, S. Henning, L. Kuhn, T. Asset, L. Guetaz, G. Renou, J. Drnec, P. Bordet, A. Pasturel, A. Eychmuller, T. J. Schmidt, P. Strasser, L. Dubau, F. Maillard, Nat. Mater. 2018, 17, 827–833.
- 113V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nat. Mater. 2007, 6, 241–247.
- 114Z. Liu, G. S. Jackson, B. W. Eichhorn, Angew. Chem. Int. Ed. 2010, 49, 3173–3176; Angew. Chem. 2010, 122, 3241–3244.
- 115Y. Hu, M. Zhu, X. Luo, G. Wu, T. Chao, Y. Qu, F. Zhou, R. Sun, X. Han, H. Li, B. Jiang, Y. Wu, X. Hong, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202014857.
- 116L. Yang, J. Shui, L. Du, Y. Shao, J. Liu, L. Dai, Z. Hu, Adv. Mater. 2019, 31, 1804799–1804819.
- 117Q. Ren, H. Wang, X. F. Lu, Y. X. Tong, G. R. Li, Adv. Sci. 2018, 5, 1700515–1700535.
- 118N. Karousis, D. Tasis, Chem. Rev. 2010, 110, 5366–5397.
- 119S. Ott, A. Orfanidi, H. Schmies, B. Anke, H. N. Nong, J. Hubner, U. Gernert, M. Gliech, M. Lerch, P. Strasser, Nat. Mater. 2020, 19, 77–85.
- 120V. Yarlagadda, M. K. Carpenter, T. E. Moylan, R. S. Kukreja, R. Koestner, W. Gu, L. Thompson, A. Kongkanand, ACS Energy Lett. 2018, 3, 618–621.
- 121X. F. Lu, B. Y. Xia, S. Q. Zang, X. W. D. Lou, Angew. Chem. Int. Ed. 2020, 59, 4634–4650; Angew. Chem. 2020, 132, 4662–4678.
- 122P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angew. Chem. Int. Ed. 2020, 59, 10807–10813; Angew. Chem. 2020, 132, 10899–10905.
- 123L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. J. Liu, Science 2018, 362, 1276–1281.
- 124K. M. Naik, E. Higuchi, H. Inoue, J. Power Sources 2020, 455, 227972–227982.
- 125B. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, T. Zhang, Angew. Chem. Int. Ed. 2020, 59, 11824–11829; Angew. Chem. 2020, 132, 11922–11927.
- 126G. W. Sievers, A. W. Jensen, J. Quinson, A. Zana, F. Bizzotto, M. Oezaslan, A. Dworzak, J. J. K. Kirkensgaard, T. E. L. Smitshuysen, S. Kadkhodazadeh, M. Juelsholt, K. M. O. Jensen, K. Anklam, H. Wan, J. Schafer, K. Cepe, M. Escudero-Escribano, J. Rossmeisl, A. Quade, V. Bruser, M. Arenz, Nat. Mater. 2021, 20, 208–213.
- 127S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee, ACS Catal. 2017, 7, 1301–1307.
- 128S.-M. Jung, S.-W. Yun, J.-H. Kim, S.-H. You, J. Park, S. Lee, S. H. Chang, S. C. Chae, S. H. Joo, Y. Jung, J. Lee, J. Son, J. Snyder, V. Stamenkovic, N. M. Markovic, Y.-T. Kim, Nat. Catal. 2020, 3, 681–690.
- 129J. Snyder, T. Fujita, M. W. Chen, J. Erlebacher, Nat. Mater. 2010, 9, 904–907.
- 130J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 17281–17284.
- 131J.-D. Yi, R. Xu, Q. Wu, T. Zhang, K.-T. Zang, J. Luo, Y.-L. Liang, Y.-B. Huang, R. Cao, ACS Energy Lett. 2018, 3, 883–889.
- 132H. Zhang, G. Liu, L. Shi, J. Ye, Adv. Energy Mater. 2018, 8, 1701343–1701366.
- 133H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc. 2017, 139, 14143–14149.
- 134J. Liu, M. Jiao, L. Lu, H. M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D. J. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, Nat. Commun. 2017, 8, 15938.
- 135J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li, M. Ruan, P. Song, G. Sun, L. Jiang, Y. Wang, Z. Jiang, L. Gu, Z. Zhou, W. Xu, Angew. Chem. Int. Ed. 2019, 58, 1163–1167; Angew. Chem. 2019, 131, 1175–1179.
- 136U. Martinez, S. Komini Babu, E. F. Holby, H. T. Chung, X. Yin, P. Zelenay, Adv. Mater. 2019, 31, 1806545–1806564.
- 137H. Yang, X. Chen, W. T. Chen, Q. Wang, N. C. Cuello, A. Nafady, A. M. Al-Enizi, G. I. N. Waterhouse, G. A. Goenaga, T. A. Zawodzinski, P. E. Kruger, J. E. Clements, J. Zhang, H. Tian, S. G. Telfer, S. Ma, ACS Nano 2019, 13, 8087–8098.
- 138T. Al-Zoubi, Y. Zhou, X. Yin, B. Janicek, C. Sun, C. E. Schulz, X. Zhang, A. A. Gewirth, P. Huang, P. Zelenay, H. Yang, J. Am. Chem. Soc. 2020, 142, 5477–5481.
- 139S. Y. Lim, S. Martin, G. Gao, Y. Dou, S. B. Simonsen, J. O. Jensen, Q. Li, K. Norrman, S. Jing, W. Zhang, Adv. Funct. Mater. 2020, 30, 2006771–2006778.
- 140F. Luo, A. Roy, L. Silvioli, D. A. Cullen, A. Zitolo, M. T. Sougrati, I. C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U. I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser, Nat. Mater. 2020, 19, 1215–1223.
- 141P. J. Ferreira, G. J. la O′, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H. A. Gasteiger, J. Electrochem. Soc. 2005, 152, A2256.
- 142F. Hegge, J. Sharman, R. Moroni, S. Thiele, R. Zengerle, M. Breitwieser, S. Vierrath, J. Electrochem. Soc. 2019, 166, F956.
- 143Z. Y. Liu, J. L. Zhang, P. T. Yu, J. X. Zhang, R. Makharia, K. L. More, E. A. Stach, J. Electrochem. Soc. 2010, 157, B906.
- 144E. Padgett, V. Yarlagadda, M. E. Holtz, M. Ko, B. D. A. Levin, R. S. Kukreja, J. M. Ziegelbauer, R. N. Andrews, J. Ilavsky, A. Kongkanand, D. A. Muller, J. Electrochem. Soc. 2019, 166, F198.
- 145Y. Ono, A. Ohma, K. Shinohara, K. Fushinobu, J. Electrochem. Soc. 2013, 160, F779.
- 146S. Martens, L. Asen, G. Ercolano, F. Dionigi, C. Zalitis, A. Hawkins, A. Martinez Bonastre, L. Seidl, A. C. Knoll, J. Sharman, P. Strasser, D. Jones, O. Schneider, J. Power Sources 2018, 392, 274–284.
- 147M. Inaba, A. W. Jensen, G. W. Sievers, M. Escudero-Escribano, A. Zana, M. Arenz, Energy Environ. Sci. 2018, 11, 988–994.
- 148L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B. Y. Xia, Acc. Chem. Res. 2021, 54, 311–322.
- 149X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu, ACS Catal. 2019, 9, 2521–2531.
- 150R. Zhou, Y. Zheng, M. Jaroniec, S.-Z. Qiao, ACS Catal. 2016, 6, 4720–4728.
- 151Q. Meyer, Y. Zeng, C. Zhao, Adv. Mater. 2019, 31, 1901900–1901925.
- 152Y. Tan, H. Matsui, N. Ishiguro, T. Uruga, D.-N. Nguyen, O. Sekizawa, T. Sakata, N. Maejima, K. Higashi, H. C. Dam, M. Tada, J. Phys. Chem. C 2019, 123, 18844–18853.
- 153K. Higashi, S. Takao, G. Samjeske, H. Matsui, M. Tada, T. Uruga, Y. Iwasawa, Phys. Chem. Chem. Phys. 2020, 22, 18919–18931.
- 154S. Takao, O. Sekizawa, K. Higashi, G. Samjeske, T. Kaneko, T. Sakata, T. Yamamoto, T. Uruga, Y. Iwasawa, ACS Appl. Mater. Interfaces 2020, 12, 2299–2312.
- 155S. O. T. Ogaji, R. Singh, P. Pilidis, M. Diacakis, J. Power Sources 2006, 154, 192–197.
- 156R. Ding, R. Wang, Y. Ding, W. Yin, Y. Liu, J. Li, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 19175–19185; Angew. Chem. 2020, 132, 19337–19345.
Citing Literature
August 9, 2021
Pages 17832-17852