Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis
Dr. Josep Mas-Roselló
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Search for more papers by this authorDr. Ana G. Herraiz
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorBenoît Audic
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorAragorn Laverny
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Nicolai Cramer
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Search for more papers by this authorDr. Josep Mas-Roselló
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Search for more papers by this authorDr. Ana G. Herraiz
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorBenoît Audic
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorAragorn Laverny
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Nicolai Cramer
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Search for more papers by this authorGraphical Abstract
Chiral cyclopentadienyls (CpX) have emerged as powerful steering ligands in asymmetric catalysis. This Review discusses the existing ligand classes, their design, syntheses, and metalation methods. Details on the successful application of the metal complexes in numerous catalytic processes are provided. Those include C−H bond functionalization chemistry and beyond, enabling access to valuable chiral molecules.
Abstract
The creation of new chiral ligands capable of providing high stereocontrol in metal-catalyzed reactions is crucial in modern organic synthesis. The production of bioactive molecules as single enantiomers is increasingly required, and asymmetric catalysis with metal complexes constitutes one of the most efficient synthetic strategies to access optically active compounds. Herein we offer a historical overview on the development of chiral derivatives of the ubiquitous cyclopentadienyl ligand (CpX), and detail their successful application in a broad range of metal-catalyzed transformations. Those include the functionalization of challenging C−H bonds and beyond, giving access to an extensive catalogue of valuable chiral molecules. A critical comparison of the existing ligand families, their design, synthesis, and complexation to different metals is also provided. In addition, future research directions are discussed to further enhance the performance and application of CpX ligands in enantioselective catalysis.
Conflict of interest
The authors declare no conflict of interest.
References
- 1A. Calcaterra, I. D′Acquarica, J. Pharm. Biomed. Anal. 2018, 147, 323–340.
- 2H.-U. Blaser, H.-J. Federsel in Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, 2010.
10.1002/9783527630639 Google Scholar
- 3T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691–1693.
- 4Q.-L. Zhou in Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011.
10.1002/9783527635207 Google Scholar
- 5D. Janssen-Müller, C. Schlepphorst, F. Glorius, Chem. Soc. Rev. 2017, 46, 4845–4854.
- 6R. L. Halterman, Chem. Rev. 1992, 92, 965–994.
- 7B. Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308–1318.
- 8C. G. Newton, D. Kossler, N. Cramer, J. Am. Chem. Soc. 2016, 138, 3935–3941.
- 9
- 9aT. Yoshino, S. Satake, S. Matsunaga, Chem. Eur. J. 2020, 26, 7346–7357;
- 9bF. Pesciaioli, U. Dhawa, J. C. A. Oliveira, R. Yin, M. John, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 15425–15429; Angew. Chem. 2018, 130, 15651–15655;
- 9cS. Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 1153–1157; Angew. Chem. 2019, 131, 1165–1169.
- 10T. J. Kealy, P. L. Pauson, Nature 1951, 168, 1039–1040.
- 11P. Jutzi, N. Burford, Chem. Rev. 1999, 99, 969–990.
- 12S. Arndt, J. Okuda, Chem. Rev. 2002, 102, 1953–1976.
- 13R. H. Crabtree in The Organometallic Chemistry of the Transition Metals, Wiley, 2014.
10.1002/9781118788301 Google Scholar
- 14W. J. Evans, Organometallics 2016, 35, 3088–3100.
- 15C. Elschenbroich in Organometallics 3rd ed. Wiley-VCH, Weinheim, 2006.
- 16J. Hartwig in Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, 2010.
- 17M. J. Calhorda, L. F. Veiros, Comments Inorg. Chem. 2001, 22, 375–391.
- 18C. Janiak, U. Versteeg, K. C. H. Lange, R. Weimann, E. Hahn, J. Organomet. Chem. 1995, 501, 219–234.
- 19N. Dunwoody, S.-S. Sun, A. J. Lees, Inorg. Chem. 2000, 39, 4442–4451.
- 20T. Piou, F. Romanov-Michailidis, M. Romanova-Michaelides, K. E. Jackson, N. Semakul, T. D. Taggart, B. S. Newell, C. D. Rithner, R. S. Paton, T. Rovis, J. Am. Chem. Soc. 2017, 139, 1296–1310.
- 21T. Piou, T. Rovis, Acc. Chem. Res. 2018, 51, 170–180.
- 22R. B. King, M. B. Bisnette, J. Organomet. Chem. 1967, 8, 287–297.
- 23J. Okuda in Transition metal complexes of sterically demanding cyclopentadienyl ligands (Eds.: W. A. Herrmann); Topics in Current Chemistry, Springer, Berlin, 1992, pp. 97–145.
- 24R. Benn, H. Grondey, G. Erker, R. Aul, R. Nolte, Organometallics 1990, 9, 2493–2497.
- 25L.-X. Dai, X.-L. Hou in Chiral Ferrocenes in Asymmetric Catalysis, Wiley-VCH, Weinheim, 2010.
10.1002/9783527628841.ch1 Google Scholar
- 26H.-U. Blaser, B. Pugin, F. Spindler, E. Mejía, A. Togni in Privileged Chiral Ligands and Catalysts (Eds.: Q.-L. Zhou), Wiley-VCH, Weinheim, 2011, Chapter 3.
10.1002/9783527635207.ch3 Google Scholar
- 27A. H. Hoveyda, J. P. Morken, Angew. Chem. Int. Ed. Engl. 1996, 35, 1262–1284;
10.1002/anie.199612621 Google ScholarAngew. Chem. 1996, 108, 1378–1401.
- 28E. P. Kündig, C. M. Saudan, F. Viton, Adv. Synth. Catal. 2001, 343, 51–56.
- 29K. Murata, T. Ikariya, R. Noyori, J. Org. Chem. 1999, 64, 2186–2187.
- 30H. Wang, Y. Park, Z. Bai, S. Chang, G. He, G. Chen, J. Am. Chem. Soc. 2019, 141, 7194–7201.
- 31Y. Matsushima, K. Onitsuka, T. Kondo, T. Mitsudo, S. Takahashi, J. Am. Chem. Soc. 2001, 123, 10405–10406.
- 32B. M. Trost, M. Rao, A. P. Dieskau, J. Am. Chem. Soc. 2013, 135, 18697–18704.
- 33E. Cesarotti, H. B. Kagan, R. Goddard, C. Krüger, J. Organomet. Chem. 1978, 162, 297–309.
- 34E. Cesarotti, R. Ugo, H. B. Kagan, Angew. Chem. Int. Ed. Engl. 1979, 18, 779–780; Angew. Chem. 1979, 91, 842–843.
- 35R. L. Halterman, K. P. C. Vollhardt, Tetrahedron Lett. 1986, 27, 1461–1464.
- 36R. L. Halterman, K. P. C. Vollhardt, Organometallics 1988, 7, 883–892.
- 37S. L. Colletti, R. L. Halterman, Tetrahedron Lett. 1989, 30, 3513–3516.
- 38B. Ye, N. Cramer, Science 2012, 338, 504–506.
- 39B. Ye, N. Cramer, J. Am. Chem. Soc. 2013, 135, 636–639.
- 40T. K. Hyster, L. Knorr, T. R. Ward, T. Rovis, Science 2012, 338, 500–503.
- 41Y. Sun, N. Cramer, Chem. Sci. 2018, 9, 2981–2985.
- 42W.-J. Cui, Z.-J. Wu, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2020, 142, 7379–7385.
- 43S. Reddy Chidipudi, D. J. Burns, I. Khan, H. W. Lam, Angew. Chem. Int. Ed. 2015, 54, 13975–13979; Angew. Chem. 2015, 127, 14181–14185.
- 44C. Duchemin, G. Smits, N. Cramer, Organometallics 2019, 38, 3939–3947.
- 45J. Zheng, W.-J. Cui, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2016, 138, 5242–5245.
- 46Z.-J. Jia, C. Merten, R. Gontla, C. G. Daniliuc, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2017, 56, 2429–2434; Angew. Chem. 2017, 129, 2469–2474.
- 47
- 47aS.-G. Wang, S. H. Park, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 5459–5462; Angew. Chem. 2018, 130, 5557–5560;
- 47bH. Liang, L. Vasamsetty, T. Li, J. Jiang, X. Pang, J. Wang, Chem. Eur. J. 2020, https://doi.org/10.1002/chem.202001814.
- 48W. Li, Z. Zhang, D. Xiao, X. Zhang, J. Org. Chem. 2000, 65, 3489–3496.
- 49B. Ye, N. Cramer, Synlett 2015, 26, 1490–1495.
- 50T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139–5151.
- 51D. Kossler, N. Cramer, J. Am. Chem. Soc. 2015, 137, 12478–12481.
- 52S.-F. Zhu, Y. Yang, L.-X. Wang, B. Liu, Q.-L. Zhou, Org. Lett. 2005, 7, 2333–2335.
- 53H. Gotoh, H. Ogino, H. Ishikawa, Y. Hayashi, Tetrahedron 2010, 66, 4894–4899.
- 54G. Erker, A. A. H. van der Zeijden, Angew. Chem. Int. Ed. Engl. 1990, 29, 512–514; Angew. Chem. 1990, 102, 543–545.
- 55
- 55aA. Gutnov, B. Heller, C. Fischer, H.-J. Drexler, A. Spannenberg, B. Sundermann, C. Sundermann, Angew. Chem. Int. Ed. 2004, 43, 3795–3797; Angew. Chem. 2004, 116, 3883–3886;
- 55bP. Jungk, T. Täufer, I. Thiel, M. Hapke, Synthesis 2016, 48, 2026–2035.
- 56M. Dieckmann, Y.-S. Jang, N. Cramer, Angew. Chem. Int. Ed. 2015, 54, 12149–12152; Angew. Chem. 2015, 127, 12317–12320.
- 57G. Song, W. W. N. O, Z. Hou, J. Am. Chem. Soc. 2014, 136, 12209–12212.
- 58K. Ozols, Y.-S. Jang, N. Cramer, J. Am. Chem. Soc. 2019, 141, 5675–5680.
- 59B. Audic, M. D. Wodrich, N. Cramer, Chem. Sci. 2019, 10, 781–787.
- 60M. Brauns, N. Cramer, Angew. Chem. Int. Ed. 2019, 58, 8902–8906; Angew. Chem. 2019, 131, 8994–8998.
- 61T. J. Potter, D. N. Kamber, B. Q. Mercado, J. A. Ellman, ACS Catal. 2017, 7, 150–153.
- 62X. Chen, S. Yang, H. Li, B. Wang, G. Song, ACS Catal. 2017, 7, 2392–2396.
- 63T. Reiner, D. Jantke, A. Raba, A. N. Marziale, J. Eppinger, J. Organomet. Chem. 2009, 694, 1934–1937.
- 64E. A. Trifonova, N. M. Ankudinov, A. A. Mikhaylov, D. A. Chusov, Y. V. Nelyubina, D. S. Perekalin, Angew. Chem. Int. Ed. 2018, 57, 7714–7718; Angew. Chem. 2018, 130, 7840–7844.
- 65
- 65aX. Yan, P. Zhao, H. Liang, H. Xie, J. Jiang, S. Gou, J. Wang, Org. Lett. 2020, 22, 3219–3223;
- 65bS. Satake, T. Kurihara, K. Nishikawa, T. Mochizuki, M. Hatano, K. Ishihara, T. Yoshino, S. Matsunaga, Nat. Catal. 2018, 1, 585–591.
- 66Y. Luo, H.-L. Teng, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2017, 56, 9207–9210; Angew. Chem. 2017, 129, 9335–9338.
- 67S.-J. Lou, Z. Mo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2020, 142, 1200–1205.
- 68B. Heller, A. Gutnov, C. Fischer, H.-J. Drexler, A. Spannenberg, D. Redkin, C. Sundermann, B. Sundermann, Chem. Eur. J. 2007, 13, 1117–1128.
- 69L. Ackermann, Chem. Rev. 2011, 111, 1315–1345.
- 70I. S. Hassan, A. N. Ta, M. W. Danneman, N. Semakul, M. Burns, C. H. Basch, V. N. Dippon, B. R. McNaughton, T. Rovis, J. Am. Chem. Soc. 2019, 141, 4815–4819.
- 71C. G. Newton, N. Cramer in Rhodium Catal. Org. Synth., Wiley-VCH, Weinheim, 2019, pp. 629–644.
- 72B. Ye, P. A. Donets, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 507–511; Angew. Chem. 2014, 126, 517–521.
- 73W. Chen, J. Li, H. Xie, J. Wang, Org. Lett. 2020, 22, 3586–3590.
- 74S. Maity, T. J. Potter, J. A. Ellman, Nat. Catal. 2019, 2, 756–762.
- 75T. Piou, T. Rovis, J. Am. Chem. Soc. 2014, 136, 11292–11295.
- 76C. Duchemin, N. Cramer, Chem. Sci. 2019, 10, 2773–2777.
- 77C. Duchemin, N. Cramer, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202006149; Angew. Chem. 2020, https://doi.org/10.1002/ange.202006149.
- 78G. Zheng, Z. Zhou, G. Zhu, S. Zhai, H. Xu, X. Duan, W. Yi, X. Li, Angew. Chem. Int. Ed. 2020, 59, 2890–2896; Angew. Chem. 2020, 132, 2912–2918.
- 79S.-G. Wang, N. Cramer, Angew. Chem. Int. Ed. 2019, 58, 2514–2518; Angew. Chem. 2019, 131, 2536–2540.
- 80X. Yang, G. Zheng, X. Li, Angew. Chem. Int. Ed. 2019, 58, 322–326; Angew. Chem. 2019, 131, 328–332.
- 81R. Mi, G. Zheng, Z. Qi, X. Li, Angew. Chem. Int. Ed. 2019, 58, 17666–17670; Angew. Chem. 2019, 131, 17830–17834.
- 82B. Ye, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 7896–7899; Angew. Chem. 2014, 126, 8030–8033.
- 83T. Li, C. Zhou, X. Yan, J. Wang, Angew. Chem. Int. Ed. 2018, 57, 4048–4052; Angew. Chem. 2018, 130, 4112–4116.
- 84
- 84aS.-G. Wang, Y. Liu, N. Cramer, Angew. Chem. Int. Ed. 2019, 58, 18136–18140; Angew. Chem. 2019, 131, 18304–18308;
- 84bS.-G. Wang, N. Cramer, ACS Catal. 2020, 10, 8231–8236.
- 85A. Ding, M. Meazza, H. Guo, J. W. Yang, R. Rios, Chem. Soc. Rev. 2018, 47, 5946–5996.
- 86J. Zheng, S.-B. Wang, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2015, 137, 4880–4883.
- 87C. Zheng, J. Zheng, S.-L. You, ACS Catal. 2016, 6, 262–271.
- 88M. V. Pham, N. Cramer, Chem. Eur. J. 2016, 22, 2270–2273.
- 89J. Zheng, S.-B. Wang, C. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2017, 56, 4540–4544; Angew. Chem. 2017, 129, 4611–4615.
- 90H. Li, R. Gontla, J. Flegel, C. Merten, S. Ziegler, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2019, 58, 307–311; Angew. Chem. 2019, 131, 313–317.
- 91L. Kong, X. Han, S. Liu, Y. Zou, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2020, 59, 7188–7192; Angew. Chem. 2020, 132, 7255–7259.
- 92G. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514–8523.
- 93J. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2014, 53, 13244–13247; Angew. Chem. 2014, 126, 13460–13463.
- 94
- 94aG. Shan, J. Flegel, H. Li, C. Merten, S. Ziegler, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2018, 57, 14250–14254; Angew. Chem. 2018, 130, 14446–14450;
- 94bH. Li, X. Yan, J. Zhang, W. Guo, J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 6732–6736; Angew. Chem. 2019, 131, 6804–6808.
- 95M. Tian, D. Bai, G. Zheng, J. Chang, X. Li, J. Am. Chem. Soc. 2019, 141, 9527–9532.
- 96F. Wang, Z. Qi, Y. Zhao, S. Zhai, G. Zheng, R. Mi, Z. Huang, X. Zhu, X. He, X. Li, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202002208; Angew. Chem. 2020, https://doi.org/10.1002/ange.202002208.
- 97S.-B. Wang, J. Zheng, S.-L. You, Organometallics 2016, 35, 1420–1425.
- 98S.-B. Wang, Q. Gu, S.-L. You, Organometallics 2017, 36, 4359–4362.
- 99J. Diesel, N. Cramer, ACS Catal. 2019, 9, 9164–9177.
- 100M. Dutartre, J. Bayardon, S. Jugé, Chem. Soc. Rev. 2016, 45, 5771–5794.
- 101J. A. Sirvent, U. Lücking, ChemMedChem 2017, 12, 487–501.
- 102Y. Sun, N. Cramer, Angew. Chem. Int. Ed. 2017, 56, 364–367; Angew. Chem. 2017, 129, 370–373.
- 103Y. Sun, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 15539–15543; Angew. Chem. 2018, 130, 15765–15769.
- 104B. Shen, B. Wan, X. Li, Angew. Chem. Int. Ed. 2018, 57, 15534–15538; Angew. Chem. 2018, 130, 15760–15764.
- 105L. Lin, S. Fukagawa, D. Sekine, E. Tomita, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2018, 57, 12048–12052; Angew. Chem. 2018, 130, 12224–12228.
- 106S. Fukagawa, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 18154–18158; Angew. Chem. 2019, 131, 18322–18326.
- 107D. Gwon, S. Park, S. Chang, Tetrahedron 2015, 71, 4504–4511.
- 108Y.-S. Jang, M. Dieckmann, N. Cramer, Angew. Chem. Int. Ed. 2017, 56, 15088–15092; Angew. Chem. 2017, 129, 15284–15288.
- 109Y.-S. Jang, Ł. Woźniak, J. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 12901–12905; Angew. Chem. 2018, 130, 13083–13087.
- 110A. Fürstner, F. Stelzer, H. Szillat, J. Am. Chem. Soc. 2001, 123, 11863–11869.
- 111D. J. Ager, A. H. M. de Vries, J. G. de Vries, Chem. Soc. Rev. 2012, 41, 3340–3380.
- 112J. M. Zimbron, T. Heinisch, M. Schmid, D. Hamels, E. S. Nogueira, T. Schirmer, T. R. Ward, J. Am. Chem. Soc. 2013, 135, 5384–5388.
- 113J. Mas-Roselló, T. Smejkal, N. Cramer, Science 2020, 368, 1098–1102.
- 114O. Eisenstein, R. H. Crabtree, New J. Chem. 2013, 37, 21–27.
- 115B. M. Trost, M. U. Frederiksen, M. T. Rudd, Angew. Chem. Int. Ed. 2005, 44, 6630–6666; Angew. Chem. 2005, 117, 6788–6825.
- 116B. M. Trost, F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067–2096.
- 117D. Kossler, N. Cramer, Chim. Int. J. Chem. 2017, 71, 186–189.
- 118D. Kossler, N. Cramer, Chem. Sci. 2017, 8, 1862–1866.
- 119T. Mitsudo, H. Naruse, T. Kondo, Y. Ozaki, Y. Watanabe, Angew. Chem. Int. Ed. Engl. 1994, 33, 580–581; Angew. Chem. 1994, 106, 595–597.
- 120D. Kossler, F. G. Perrin, A. A. Suleymanov, G. Kiefer, R. Scopelliti, K. Severin, N. Cramer, Angew. Chem. Int. Ed. 2017, 56, 11490–11493; Angew. Chem. 2017, 129, 11648–11651.
- 121S. H. Park, S.-G. Wang, N. Cramer, ACS Catal. 2019, 9, 10226–10231.
- 122P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452.
- 123J. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803–12818; Angew. Chem. 2019, 131, 12934–12949.
- 124Ł. Woźniak, N. Cramer, Trends Chem. 2019, 1, 471–484.
- 125T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, Angew. Chem. Int. Ed. 2013, 52, 2207–2211; Angew. Chem. 2013, 125, 2263–2267.
- 126T. K. Hyster, D. M. Dalton, T. Rovis, Chem. Sci. 2015, 6, 254–258.
- 127T. K. Hyster, D. M. Dalton, T. Rovis, Chem. Sci. 2017, 8, 1666.
- 128E. A. Trifonova, N. M. Ankudinov, M. V. Kozlov, M. Y. Sharipov, Y. V. Nelyubina, D. S. Perekalin, Chem. Eur. J. 2018, 24, 16570–16575.
- 129A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano, L. Cavallo, Eur. J. Inorg. Chem. 2009, 1759–1766.
- 130M. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res. 2015, 48, 2209–2220.
- 131H.-L. Teng, Y. Ma, G. Zhan, M. Nishiura, Z. Hou, ACS Catal. 2018, 8, 4705–4709.
- 132H.-L. Teng, Y. Luo, B. Wang, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 15406–15410; Angew. Chem. 2016, 128, 15632–15636.
- 133H.-L. Teng, Y. Luo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2017, 139, 16506–16509.
- 134J. S. Mills, G. A. Showell, Expert Opin. Invest. Drugs 2004, 13, 1149–1157.
- 135L.-W. Xu, L. Li, G.-Q. Lai, J.-X. Jiang, Chem. Soc. Rev. 2011, 40, 1777–1790.
- 136G. Zhan, H.-L. Teng, Y. Luo, S.-J. Lou, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2018, 57, 12342–12346; Angew. Chem. 2018, 130, 12522–12526.
- 137A. F. Zahrt, S. V. Athavale, S. E. Denmark, Chem. Rev. 2020, 120, 1620–1689.
- 138G. Smits, B. Audic, M. D. Wodrich, C. Corminboeuf, N. Cramer, Chem. Sci. 2017, 8, 7174–7179.
- 139T. H. Meyer, L. H. Finger, P. Gandeepan, L. Ackermann, Trends Chem. 2019, 1, 63–76.
- 140S. M. Barrett, C. L. Pitman, A. G. Walden, A. J. M. Miller, J. Am. Chem. Soc. 2014, 136, 14718–14721.
- 141P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 9820–9825; Angew. Chem. 2019, 131, 9925–9930.
Citing Literature
June 7, 2021
Pages 13198-13224