High-Density and Thermally Stable Palladium Single-Atom Catalysts for Chemoselective Hydrogenations
Ying Ma
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally in this work.
Search for more papers by this authorDr. Yujing Ren
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
These authors contributed equally in this work.
Search for more papers by this authorDr. Yanan Zhou
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Wei Liu
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorDr. Walid Baaziz
Institute de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-University of Strasbourg, 23, rue du Loess, 67037 Strasbourg Cedex 08, France
Search for more papers by this authorProf. Dr. Ovidiu Ersen
Institute de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-University of Strasbourg, 23, rue du Loess, 67037 Strasbourg Cedex 08, France
Search for more papers by this authorDr. Cuong Pham-Huu
Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515, CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
Search for more papers by this authorDr. Mark Greiner
Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, 45470 Germany
Search for more papers by this authorProf. Dr. Wei Chu
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Aiqin Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorProf. Dr. Tao Zhang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuefeng Liu
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorYing Ma
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally in this work.
Search for more papers by this authorDr. Yujing Ren
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
These authors contributed equally in this work.
Search for more papers by this authorDr. Yanan Zhou
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Wei Liu
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorDr. Walid Baaziz
Institute de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-University of Strasbourg, 23, rue du Loess, 67037 Strasbourg Cedex 08, France
Search for more papers by this authorProf. Dr. Ovidiu Ersen
Institute de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-University of Strasbourg, 23, rue du Loess, 67037 Strasbourg Cedex 08, France
Search for more papers by this authorDr. Cuong Pham-Huu
Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515, CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
Search for more papers by this authorDr. Mark Greiner
Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, 45470 Germany
Search for more papers by this authorProf. Dr. Wei Chu
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Aiqin Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorProf. Dr. Tao Zhang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuefeng Liu
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorIn memory of Professor Dang Sheng Su
Graphical Abstract
Abstract
Single-atom catalysts (SACs) have shown superior activity and/or selectivity for many energy- and environment-related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy-enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α-MoC catalyst exhibits high activity and excellent selectivity for liquid-phase hydrogenation of substituted nitroaromatics (>99 %) and gas-phase hydrogenation of CO2 to CO (>98 %). The Pd1/α-MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202007707-sup-0001-misc_information.pdf4.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634;
- 1bM. Yang, S. Li, Y. Wang, J. A. Herron, Y. Xu, L. F. Allard, S. Lee, J. Huang, M. Mavrikakis, M. Flytzani-Stephanopoulos, Science 2014, 346, 1498–1501;
- 1cP. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, Science 2016, 352, 797–800;
- 1dL. Liu, A. Corma, Chem. Rev. 2018, 118, 4981–5079;
- 1eA. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65;
- 1fX. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 2018, 1, 385;
- 1gL. Cao, W. Liu, Q. Luo, R. Yin, B. Wang, J. Weissenrieder, M. Soldemo, H. Yan, Y. Lin, Z. Sun, Nature 2019, 565, 631;
- 1hZ. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, Y. Li, Chem. Rev. 2020, 120, 623–682.
- 2
- 2aP. Liu, N. Zheng, Natl. Sci. Rev. 2018, 5, 636–638;
- 2bN. Daelman, M. Capdevila-Cortada, N. López, Nat. Mater. 2019, 18, 1215–1221;
- 2cY. Ren, Y. Tang, L. Zhang, X. Liu, L. Li, S. Miao, D. S. Su, A. Wang, J. Li, T. Zhang, Nat. Commun. 2019, 10, 1–9.
- 3
- 3aM. Moliner, J. E. Gabay, C. E. Kliewer, R. T. Carr, J. Guzman, G. L. Casty, P. Serna, A. Corma, J. Am. Chem. Soc. 2016, 138, 15743–15750;
- 3bL. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, Nat. Mater. 2019, 18, 746–751.
- 4
- 4aJ. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. P. Hernández, Science 2016, 353, 150–154;
- 4bR. Lang, W. Xi, J.-C. Liu, Y.-T. Cui, T. Li, A. F. Lee, F. Chen, Y. Chen, L. Li, L. Li, Nat. Commun. 2019, 10, 234.
- 5K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 2015, 350, 189–192.
- 6
- 6aL. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, Nature 2017, 544, 80;
- 6bJ. Dong, Q. Fu, Z. Jiang, B. Mei, X. Bao, J. Am. Chem. Soc. 2018, 140, 13808–13816;
- 6cL. Lin, S. Yao, R. Gao, X. Liang, Q. Yu, Y. Deng, J. Liu, M. Peng, Z. Jiang, S. Li, Nat. Nanotechnol. 2019, 14, 354;
- 6dS. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, Science 2017, 357, 389–393.
- 7
- 7aS. Oyama, Catal. Today 1992, 15, 179–200;
- 7bA. L. Ivanovskii, Russ. Chem. Rev. 2009, 78, 303;
- 7cT. G. Kelly, J. G. Chen, Chem. Soc. Rev. 2012, 41, 8021–8034;
- 7dS. T. Hunt, M. Milina, A. C. Alba-Rubio, C. H. Hendon, J. A. Dumesic, Y. Román-Leshkov, Science 2016, 352, 974–978;
- 7eZ. Li, Y. Cui, Z. Wu, C. Milligan, L. Zhou, G. Mitchell, B. Xu, E. Shi, J. T. Miller, F. H. Ribeiro, Nat. Catal. 2018, 1, 349;
- 7fJ. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985;
- 7gZ. Li, L. Yu, C. Milligan, T. Ma, L. Zhou, Y. Cui, Z. Qi, N. Libretto, B. Xu, J. Luo, Nat. Commun. 2018, 9, 5258.
- 8J. G. Chen, Chem. Rev. 1996, 96, 1477–1498.
- 9F. Tao, P. A. Crozier, Chem. Rev. 2016, 116, 3487–3539.
- 10
- 10aS. Zhang, C. Chen, M. Cargnello, P. Fornasiero, R. J. Gorte, G. W. Graham, X. Pan, Nat. Commun. 2015, 6, 7778;
- 10bJ. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017, 9, 120.
- 11K. T. Jung, W. B. Kim, C. H. Rhee, J. S. Lee, Chem. Mater. 2004, 16, 307–314.
- 12D. Gazzoli, F. Prinetto, M. Campa, A. Cimino, G. Ghiotti, V. Indovina, M. Valigi, Surf. Interface Anal. 1994, 22, 398–402.
- 13M. D. Porosoff, X. Yang, J. A. Boscoboinik, J. G. Chen, Angew. Chem. Int. Ed. 2014, 53, 6705–6709; Angew. Chem. 2014, 126, 6823–6827.
- 14R. G. Rao, R. Blume, T. W. Hansen, E. Fuentes, K. Dreyer, S. Moldovan, O. Ersen, D. D. Hibbitts, Y. J. Chabal, R. Schlögl, Nat. Commun. 2017, 8, 340.
- 15M.-H. Liu, Y.-W. Chen, X. Liu, J.-L. Kuo, M.-W. Chu, C.-Y. Mou, ACS Catal. 2016, 6, 115–122.
- 16A. Fernández Guillermet, J. Häglund, G. Grimvall, Phys. Rev. B 1992, 45, 11557.
- 17D.-S. Kim, J.-H. Yang, S. Balaji, H.-J. Cho, M.-K. Kim, D.-U. Kang, Y. Djaoued, Y.-U. Kwon, CrystEngComm 2009, 11, 1621–1629.
- 18L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683–733.
- 19
- 19aG. Vilé, N. Almora-Barrios, S. Mitchell, N. López, J. Pérez-Ramírez, Chem. Eur. J. 2014, 20, 5926–5937;
- 19bG. Vilé, D. Albani, N. Almora-Barrios, N. López, J. Pérez-Ramírez, ChemCatChem 2016, 8, 21–33;
- 19cG. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. López, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2015, 54, 11265–11269; Angew. Chem. 2015, 127, 11417–11422.
- 20
- 20aJ. Zhang, L. Wang, Y. Shao, Y. Wang, B. C. Gates, F. S. Xiao, Angew. Chem. Int. Ed. 2017, 56, 9747–9751; Angew. Chem. 2017, 129, 9879–9883;
- 20bL. Wang, E. Guan, J. Zhang, J. Yang, Y. Zhu, Y. Han, M. Yang, C. Cen, G. Fu, B. C. Gates, Nat. Commun. 2018, 9, 1362;
- 20cS. Zhang, C.-R. Chang, Z.-Q. Huang, J. Li, Z. Wu, Y. Ma, Z. Zhang, Y. Wang, Y. Qu, J. Am. Chem. Soc. 2016, 138, 2629–2637;
- 20dG. Vilé, N. Almora-Barrios, N. López, J. Pérez-Ramírez, ACS Catal. 2015, 5, 3767–3778.
- 21Y. Ma, Z. Guo, Q. Jiang, K.-H. Wu, H. Gong, Y. Liu, J. Energy Chem. 2020, 50, 37–43.
- 22
- 22aJ. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2094–2100;
- 22bJ. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2449–2455;
- 22cM.-M. Millet, G. Algara-Siller, S. Wrabetz, A. Mazheika, F. Girgsdies, D. Teschner, F. Seitz, A. Tarasov, S. V. Levchenko, R. Schlögl, J. Am. Chem. Soc. 2019, 141, 2451–2461.