Development and Investigation of a NASICON-Type High-Voltage Cathode Material for High-Power Sodium-Ion Batteries
Dr. Mingzhe Chen
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
These authors contributed equally to this work.
Search for more papers by this authorDr. Weibo Hua
Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
These authors contributed equally to this work.
Search for more papers by this authorDr. Jin Xiao
School of Science, Hunan University of Technology, Zhuzhou, 412007 P. R. China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Search for more papers by this authorDr. David Cortie
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorProf. Xiaodong Guo
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorDr. Enhui Wang
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorDr. Qinfen Gu
Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168 Australia
Search for more papers by this authorDr. Zhe Hu
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorProf. Sylvio Indris
Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorProf. Xiao-Lin Wang
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorCorresponding Author
Dr. Shu-Lei Chou
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorProf. Shi-Xue Dou
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorDr. Mingzhe Chen
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
These authors contributed equally to this work.
Search for more papers by this authorDr. Weibo Hua
Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
These authors contributed equally to this work.
Search for more papers by this authorDr. Jin Xiao
School of Science, Hunan University of Technology, Zhuzhou, 412007 P. R. China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 P. R. China
Search for more papers by this authorDr. David Cortie
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorProf. Xiaodong Guo
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorDr. Enhui Wang
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorDr. Qinfen Gu
Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168 Australia
Search for more papers by this authorDr. Zhe Hu
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorProf. Sylvio Indris
Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorProf. Xiao-Lin Wang
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorCorresponding Author
Dr. Shu-Lei Chou
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorProf. Shi-Xue Dou
Australian Institute for Innovative Materials, Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522 Australia
Search for more papers by this authorGraphical Abstract
A new NASICON-type high-voltage cathode material of Na3V(PO3)3N was synthesized and its electrochemical performance was improved by carbon matrix decoration. An in-depth investigation of the material was performed through in situ XAS and XRD, and its 3D sodium pathways were clearly identified through DFT calculations.
Abstract
Herein, we introduce a 4.0 V class high-voltage cathode material with a newly recognized sodium superionic conductor (NASICON)-type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N-doped graphene oxide-wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all-climate performance were carefully investigated. A near-zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X-ray diffraction, and the in situ X-ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high-voltage NASICON-type Na3V(PO3)3N composite is a competitive cathode material for sodium-ion batteries and will receive more attention and studies in the future.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201912964-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Armand, J.-M. Tarascon, Nature 2008, 451, 652–657;
- 1bB. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.
- 2Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279–289.
- 3J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529–3614.
- 4N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636–11682.
- 5
- 5aM. Chen, Q. Liu, S.-W. Wang, E. Wang, X. Guo, S.-L. Chou, Adv. Energy Mater. 2019, 9, 1803609;
- 5bM. Chen, L. Chen, Z. Hu, Q. Liu, B. Zhang, Y. Hu, Q. Gu, J.-L. Wang, L.-Z. Wang, X. Guo, S.-L. Chou, S.-X. Dou, Adv. Mater. 2017, 29, 1605535;
- 5cK. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Joule 2018, 2, 1950–1960;
- 5dC. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013;
- 5eZ. Hu, Z. Tai, Q. Liu, S.-W. Wang, H. Jin, S. Wang, W. Lai, M. Chen, L. Li, L. Chen, Z. Tao, S.-L. Chou, Adv. Energy Mater. 2019, 9, 1803210;
- 5fW. Ding, L. Hu, J. Dai, X. Tang, R. Wei, Z. Sheng, C. Liang, D. Shao, W. Song, Q. Liu, M. Chen, X. Zhu, S. Chou, X. Zhu, Q. Chen, Y. Sun, S. X. Dou, ACS Nano 2019, 13, 1694–1702;
- 5gM. Chen, E. Wang, Q. Liu, X. Guo, W. Chen, S.-L. Chou, S.-X. Dou, Energy Storage Mater. 2019, 19, 163–178.
- 6
- 6aT. Yuan, Y. Wang, J. Zhang, X. Pu, X. Ai, Z. Chen, H. Yang, Y. Cao, Nano Energy 2019, 56, 160–168;
- 6bM. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S. L. Chou, S. X. Dou, Nat. Commun. 2019, 10, 1480.
- 7
- 7aJ. Kim, G. Yoon, H. Kim, Y.-U. Park, K. Kang, Chem. Mater. 2018, 30, 3683–3689;
- 7bM. Chen, D. Cortie, Z. Hu, H. Jin, S. Wang, Q. Gu, W. Hua, E. Wang, W. Lai, L. Chen, S.-L. Chou, X.-L. Wang, S.-X. Dou, Adv. Energy Mater. 2018, 8, 1800944.
- 8
- 8aE. Wang, W. Xiang, R. Rajagopalan, Z. Wu, J. Yang, M. Chen, B. Zhong, S. X. Dou, S. Chou, X. Guo, Y.-M. Kang, J. Mater. Chem. A 2017, 5, 9833–9841;
- 8bE. Wang, M. Chen, X. Liu, Y. Liu, H. Guo, Z. Wu, W. Xiang, B. Zhong, X. Guo, S. Chou, S.-X. Dou, Small Methods 2019, 3, 1800169.
- 9
- 9aG. Yan, S. Mariyappan, G. Rousse, Q. Jacquet, M. Deschamps, R. David, B. Mirvaux, J. W. Freeland, J. M. Tarascon, Nat. Commun. 2019, 10, 585;
- 9bM. Reynaud, A. Wizner, N. A. Katcho, L. C. Loaiza, M. Galceran, J. Carrasco, T. Rojo, M. Armand, M. Casas-Cabanas, Electrochem. Commun. 2017, 84, 14–18.
- 10J. Kim, G. Yoon, M. H. Lee, H. Kim, S. Lee, K. Kang, Chem. Mater. 2017, 29, 7826–7832.
- 11J. Liu, D. Chang, P. Whitfield, Y. Janssen, X. Yu, Y. Zhou, J. Bai, J. Ko, K.-W. Nam, L. Wu, Y. Zhu, M. Feygenson, G. Amatucci, A. Van der Ven, X.-Q. Yang, P. Khalifah, Chem. Mater. 2014, 26, 3295–3305.
- 12
- 12aZ. Dai, U. Mani, H. T. Tan, Q. Yan, Small Methods 2017, 1, 1700098;
- 12bB. Senthilkumar, C. Murugesan, L. Sharma, S. Lochab, P. Barpanda, Small Methods 2019, 3, 1800253;
- 12cY. You, A. Manthiram, Adv. Energy Mater. 2018, 8, 1701785.
- 13
- 13aP. Ge, H. Hou, S. Li, L. Yang, X. Ji, Adv. Funct. Mater. 2018, 28, 1801765;
- 13bW. Wang, X. Liu, Q. Xu, H. Liu, Y.-G. Wang, Y. Xia, Y. Cao, X. Ai, J. Mater. Chem. A 2018, 6, 4354–4364.
- 14H. Zhang, D. Buchholz, S. Passerini, Energies 2017, 10, 889.
- 15B. Wen, Q. Wang, Y. Lin, N. A. Chernova, K. Karki, Y. Chung, F. Omenya, S. Sallis, L. F. J. Piper, S. P. Ong, M. S. Whittingham, Chem. Mater. 2016, 28, 3159–3170.
- 16W. Shen, H. Li, Z. Guo, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia, ACS Appl. Mater. Interfaces 2016, 8, 15341–15351.
- 17Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li, M. Chen, Z. Tao, Y. M. Kang, L. Mai, S. L. Chou, J. Chen, S. X. Dou, ACS Appl. Mater. Interfaces 2018, 10, 35978–35983.
- 18Y. Ma, Q. Guo, M. Yang, Y. Wang, T. Chen, Q. Chen, X. Zhu, Q. Xia, S. Li, H. Xia, Energy Storage Mater. 2018, 13, 134–141.
- 19J. Y. Jang, H. Kim, Y. Lee, K. T. Lee, K. Kang, N.-S. Choi, Electrochem. Commun. 2014, 44, 74–77.
- 20R. Gao, R. Tan, L. Han, Y. Zhao, Z. Wang, L. Yang, F. Pan, J. Mater. Chem. A 2017, 5, 5273–5277.
- 21
- 21aW. Zhou, L. Xue, X. Lü, H. Gao, Y. Li, S. Xin, G. Fu, Z. Cui, Y. Zhu, J. B. Goodenough, Nano Lett. 2016, 16, 7836–7841;
- 21bW. B. Park, S. C. Han, C. Park, S. U. Hong, U. Han, S. P. Singh, Y. H. Jung, D. Ahn, K.-S. Sohn, M. Pyo, Adv. Energy Mater. 2018, 8, 1703099;
- 21cC. Li, M. Shen, B. Hu, X. Lou, X. Zhang, W. Tong, B. Hu, J. Mater. Chem. A 2018, 6, 8340–8348;
- 21dM. Law, P. Balaya, Energy Storage Mater. 2018, 10, 102–113;
- 21eY. Fang, Q. Liu, L. Xiao, Y. Rong, Y. Liu, Z. Chen, X. Ai, Y. Cao, H. Yang, J. Xie, C. Sun, X. Zhang, B. Aoun, X. Xing, X. Xiao, Y. Ren, Chem 2018, 4, 1167–1180;
- 21fW. Fang, Z. An, J. Xu, H. Zhao, J. Zhang, RSC Adv. 2018, 8, 21224–21228;
- 21gD. Chao, C.-H. M. Lai, P. Liang, Q. Wei, Y.-S. Wang, C. R. Zhu, G. Deng, V. V. T. Doan-Nguyen, J. Lin, L. Mai, H. J. Fan, B. Dunn, Z. X. Shen, Adv. Energy Mater. 2018, 8, 1800058;
- 21hC. Zhu, C. Wu, C.-C. Chen, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Chem. Mater. 2017, 29, 5207–5215;
- 21iD. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik, Y. S. Hu, F. Fauth, Y. Wei, H. Ehrenberg, G. Chen, F. Du, Nat. Commun. 2017, 8, 15888;
- 21jJ. Liu, Z. Chen, S. Chen, B. Zhang, J. Wang, H. Wang, B. Tian, M. Chen, X. Fan, Y. Huang, T. C. Sum, J. Lin, Z. X. Shen, ACS Nano 2017, 11, 6911–6920;
- 21kY. Zhu, L. Peng, D. Chen, G. Yu, Nano Lett. 2016, 16, 742–747;
- 21lX. Xiang, Q. Lu, M. Han, J. Chen, Chem. Commun. 2016, 52, 3653–3656;
- 21mJ. Kim, I. Park, H. Kim, K.-Y. Park, Y.-U. Park, K. Kang, Adv. Energy Mater. 2016, 6, 1502147.
- 22
- 22aB. Lin, S. Zhang, C. Deng, J. Mater. Chem. A 2016, 4, 2550–2559;
- 22bK.-H. Ha, S. H. Woo, D. Mok, N.-S. Choi, Y. Park, S. M. Oh, Y. Kim, J. Kim, J. Lee, L. F. Nazar, K. T. Lee, Adv. Energy Mater. 2013, 3, 770–776.
- 23S. S. Fedotov, N. A. Kabanova, A. A. Kabanov, V. A. Blatov, N. R. Khasanova, E. V. Antipov, Solid State Ionics 2018, 314, 129–140.
- 24J. Liu, L. Yin, X.-Q. Yang, P. G. Khalifah, Chem. Mater. 2018, 30, 4609–4616.