Tracking Pathogen Infections by Time-Resolved Chemical Proteomics
Corresponding Author
Prof. Dr. Ying Zhang
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Minghang Hospital and Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032 China
Search for more papers by this authorDer-Shyang Kao
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorDr. Bing Gu
Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorDr. Rajdeep Bomjan
Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorDr. Mayank Srivastava
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorProf. Dr. Haojie Lu
Minghang Hospital and Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032 China
Search for more papers by this authorProf. Dr. Daoguo Zhou
Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. W. Andy Tao
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Ying Zhang
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Minghang Hospital and Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032 China
Search for more papers by this authorDer-Shyang Kao
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorDr. Bing Gu
Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorDr. Rajdeep Bomjan
Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorDr. Mayank Srivastava
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorProf. Dr. Haojie Lu
Minghang Hospital and Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032 China
Search for more papers by this authorProf. Dr. Daoguo Zhou
Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. W. Andy Tao
Department of Biochemistry, Department of Chemistry, Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA
Search for more papers by this authorGraphical Abstract
Abstract
Studying the dynamic interaction between host cells and pathogen is vital but remains technically challenging. We describe herein a time-resolved chemical proteomics strategy enabling host and pathogen temporal interaction profiling (HAPTIP) for tracking the entry of a pathogen into the host cell. A novel multifunctional chemical proteomics probe was introduced to label living bacteria followed by in vivo crosslinking of bacteria proteins to their interacting host-cell proteins at different time points initiated by UV for label-free quantitative proteomics analysis. We observed over 400 specific interacting proteins crosslinked with the probe during the formation of Salmonella-containing vacuole (SCV). This novel chemical proteomics approach provides a temporal interaction profile of host and pathogen in high throughput and would facilitate better understanding of the infection process at the molecular level.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201911078-sup-0001-1.pdf191.3 KB | Supplementary |
anie201911078-sup-0001-3.pdf91.7 KB | Supplementary |
anie201911078-sup-0001-4.pdf20.5 KB | Supplementary |
anie201911078-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. S. Garrett, Science 2015, 348, 80–86.
- 2P. M. J. Beltran, J. D. Federspiel, X. Sheng, I. M. Cristea, Mol. Syst. Biol. 2017, 13, 922.
- 3M. P. Weekes, P. Tomasec, E. L. Huttlin, C. A. Fielding, D. Nusinow, R. J. Stanton, E. C. Wang, R. Aicheler, I. Murrell, G. W. Wilkinson, P. J. Lehner, S. P. Gygi, Cell 2014, 157, 1460–1472.
- 4P. Scaturro, A. Stukalov, D. A. Haas, M. Cortese, K. Draganova, A. Płaszczyca, R. Bartenschlager, M. Götz, A. Pichlmair, Nature 2018, 561, 253–257.
- 5Y. F. Yang, M. Hu, K. W. Yu, X. M. Zeng, X. Y. Liu, Protein Cell 2015, 6, 265–274.
- 6A. P. Frei, O. Y. Jeon, S. Kilcher, H. Moest, L. M. Henning, C. Jost, A. Plückthun, J. Mercer, R. Aebersold, E. M. Carreira, B. Wollscheid, Nat. Biotechnol. 2012, 30, 997–1001.
- 7N. Sobotzki, M. A. Schafroth, A. Rudnicka, A. Koetemann, F. Marty, S. Goetze, Y. Yamauchi, E. M. Carreira, B. Wollscheid, Nat. Commun. 2018, 9, 1519.
- 8L. Bar-Peled, E. K. Kemper, R. M. Suciu, E. V. Vinogradova, K. M. Backus, B. D. Horning, T. A. Paul, T. A. Ichu, R. U. Svensson, J. Olucha, M. W. Chang, B. P. Kok, Z. Zhu, N. T. Ihle, M. M. Dix, P. Jiang, M. M. Hayward, E. Saez, R. J. Shaw, B. F. Cravatt, Cell 2017, 171, 696–709.
- 9D. He, X. Xie, F. Yang, H. Zhang, H. M. Su, Y. Ge, H. P. Song, P. R. Chen, Angew. Chem. Int. Ed. 2017, 56, 14521–14525; Angew. Chem. 2017, 129, 14713–14717.
- 10M. Broncel, R. A. Serwa, P. Ciepla, E. Krause, M. J. Dallman, A. I. Magee, E. W. Tate, Angew. Chem. Int. Ed. 2015, 54, 5948–5951; Angew. Chem. 2015, 127, 6046–6049.
- 11L. N. Wang, L. Yang, L. Pan, N. R. Kadasala, L. Xue, R. J. Schuster, L. L. Parker, A. Wei, W. A. Tao, J. Am. Chem. Soc. 2015, 137, 12772–12775.
- 12A. Haraga, M. B. Ohlson, S. I. Miller, Nat. Rev. Microbiol. 2008, 6, 53–66.
- 13O. Steele-Mortimer, Curr. Opin. Microbiol. 2008, 11, 38–45.
- 14T. H. Greg, Bioconjugate Techniques, 2nd ed., Academic Press, New York, 2008, pp. 171 and 183.
- 15Y. Zeng, T. N. C. Ramya, A. Dirksen, P. E. Dawson, J. C. Paulson, Nat. Methods 2009, 6, 207–209.
- 16H. P. Xiao, S. Suttapitugsakul, F. X. Sun, R. H. Wu, Acc. Chem. Res. 2018, 51, 1796–1806.
- 17Z. Q. Li, P. L. Hao, L. Li, C. Y. J. Tan, X. M. Cheng, G. Y. J. Chen, S. K. Sze, H. M. Shen, S. Q. Yao, Angew. Chem. Int. Ed. 2013, 52, 8551–8556; Angew. Chem. 2013, 125, 8713–8718.
- 18S. Schleker, J. C. Sun, B. Raghavan, M. Srnec, N. Muller, M. Koepfinger, L. Murthy, Z. M. Zhao, J. Klein-Seetharaman, Proteomics Clin. Appl. 2012, 6, 117–133.
- 19L. D. Rogers, A. R. Kristensen, E. C. Boyle, D. P. Robinson, R. T. Ly, B. B. Finlay, L. J. Foster, J. Proteomics 2008, 71, 97–108.
- 20G. J. Rapsinski, T. N. Newman, G. O. Oppong, J. P. van Putten, Ç. Tükel, J. Biol. Chem. 2013, 288, 14178–14188.
- 21L. A. Knodler, O. Steele-Mortimer, Traffic 2003, 4, 587–599.
- 22I. Zanoni, R. Ostuni, L. R. Marek, S. Barresi, R. Barbalat, G. M. Barton, F. Granucci, J. C. Kagan, Cell 2011, 147, 868–880.
- 23N. Schroeder, C. S. Chung, C. H. Chen, C. L. Liao, W. Chang, J. Virol. 2012, 86, 4868–4882.
- 24S. C. Bernard, N. Simpson, O. Join-Lambert, C. Federici, M. P. Laran-Chich, N. Maissa, H. Bouzinba-Segard, P. C. Morand, F. Chretien, S. Taouji, E. Chevet, S. Janel, F. Lafont, M. Coureuil, A. Segura, F. Niedergang, S. Marullo, P. O. Couraud, X. Nassif, S. Bourdoulous, Nat. Med. 2014, 20, 725–731.
- 25J. C. Kagan, Trends Immunol. 2017, 38, 696–704.