Multiple Anti-Counterfeiting Guarantees from a Simple Tetraphenylethylene Derivative – High-Contrasted and Multi-State Mechanochromism and Photochromism
Dr. Guangxi Huang
Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055 China
Search for more papers by this authorQing Xia
Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055 China
Search for more papers by this authorWenbin Huang
School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055 China
Search for more papers by this authorJianwu Tian
Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorProf. Zikai He
School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Bing Shi Li
Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Ben Zhong Tang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorDr. Guangxi Huang
Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055 China
Search for more papers by this authorQing Xia
Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055 China
Search for more papers by this authorWenbin Huang
School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055 China
Search for more papers by this authorJianwu Tian
Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorProf. Zikai He
School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Bing Shi Li
Key Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Ben Zhong Tang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Search for more papers by this authorGraphical Abstract
Forgery-proof: A novel AIE molecule 1 is designed with high-contrasted and multi-state mechanochromic and photochromic properties. Based on these properties, 1 shows great potential for application in advanced multidimensional anti-counterfeiting, which was demonstrated by fabrication of a model banknote.
Abstract
Herein the novel tetraphenylethylene (TPE) derivative 1 was designed with an integration of aggregation-induced emission (AIE), multi-state mechanochromism and self-recovery photochromism. The molecule was susceptible to grinding, heating and vapor fuming and showed corresponding transition of its emission colors. The heated powder or single crystal of 1 exhibited reversible photochromism. After a short period of UV irradiation, it showed a bright red color, but recovered to its original white appearance within 1 min. The photochromism is due to the formation of photocyclization intermediates upon UV irradiation, while the eversible mechanochromism is attributed to the weak molecular interactions derived from head-to-tail stacking of the molecules. This reversible multi-state, high-contrasted and rapid responsive mechanochromic and photochromic property cooperatively provide double enhancement of a multimode guarantee in advanced anti-counterfeiting.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201910530-sup-0001-misc_information.pdf1.8 MB | Supplementary |
anie201910530-sup-0001-Video_S1.mp44.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS.-J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M.-G. Choi, D. Kim, S. Y. Park, J. Am. Chem. Soc. 2010, 132, 13675–13683;
- 1bG. Zhang, J. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 132, 2160–2162;
- 1cX. Zhang, Z. Chi, H. Li, B. Xu, X. Li, W. Zhou, S. Liu, Y. Zhang, J. Xu, Chem. Asian J. 2011, 6, 808–811;
- 1dX. Sun, X. Zhang, X. Li, S. Liu, G. Zhang, J. Mater. Chem. 2012, 22, 17332–17339.
- 2
- 2aZ. Yang, Z. Chi, Z. Mao, Y. Zhang, S. Liu, J. Zhao, M. P. Aldred, Z. Chi, Mater. Chem. Front. 2018, 2, 861–890;
- 2bJ. Zhao, Z. Chi, Z. Yang, Z. Mao, Y. Zhang, E. Ubba, Z. Chi, Mater. Chem. Front. 2018, 2, 1595–1608;
- 2cJ. Zhao, Z. Chi, Y. Zhang, Z. Mao, Z. Yang, E. Ubba, Z. Chi, J. Mater. Chem. C 2018, 6, 6327–6353.
- 3
- 3aY. Sagara, T. Kato, Angew. Chem. Int. Ed. 2011, 50, 9128–9132; Angew. Chem. 2011, 123, 9294–9298;
- 3bY. Dong, B. Xu, J. Zhang, X. Tan, L. Wang, J. Chen, H. Lv, S. Wen, B. Li, L. Ye, B. Zou, W. Tian, Angew. Chem. Int. Ed. 2012, 51, 10782–10785; Angew. Chem. 2012, 124, 10940–10943;
- 3cZ. Ma, Z. Wang, X. Meng, Z. Ma, Z. Xu, Y. Ma, X. Jia, Angew. Chem. Int. Ed. 2016, 55, 519–522; Angew. Chem. 2016, 128, 529–532;
- 3dZ. Zhao, T. Chen, S. Jiang, Z. Liu, D. Fang, Y. Q. Dong, J. Mater. Chem. C 2016, 4, 4800–4804;
- 3eY. Wang, G. Zhang, W. Zhang, X. Wang, Y. Wu, T. Liang, X. Hao, H. Fu, Y. Zhao, D. Zhang, Small 2016, 12, 6554–6561;
- 3fY. Duan, H. Ma, H. Tian, J. Liu, X. Deng, Q. Peng, Y. Q. Dong, Chem. Asian J. 2019, 14, 864–870;
- 3gG. Huang, Y. Jiang, S. Yang, B. S. Li, B. Z. Tang, Adv. Funct. Mater. 2019, 29, 1900516;
- 3hN. M.-W. Wu, M. Ng, V. W.-W. Yam, Angew. Chem. Int. Ed. 2019, 58, 3027–3031; Angew. Chem. 2019, 131, 3059–3063.
- 4
- 4aJ. Zhang, Q. Zou, H. Tian, Adv. Mater. 2013, 25, 378–399;
- 4bC. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, X. Guo, Science 2016, 352, 1443–1445;
- 4cC. B. Fan, L. Le Gong, L. Huang, F. Luo, R. Krishna, X. F. Yi, A. M. Zheng, L. Zhang, S. Z. Pu, X. F. Feng, M. B. Luo, G. C. Guo, Angew. Chem. Int. Ed. 2017, 56, 7900–7906; Angew. Chem. 2017, 129, 8008–8014;
- 4dZ. Liu, H. I. Wang, A. Narita, Q. Chen, Z. Mics, D. Turchinovich, M. Kläui, M. Bonn, K. Müllen, J. Am. Chem. Soc. 2017, 139, 9443–9446;
- 4eL. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044–1097.
- 5
- 5aC. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang, R. Zhao, D. Zhu, J. Am. Chem. Soc. 2010, 132, 3092–3096;
- 5bH. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809–1825.
- 6
- 6aH. Tian, S. Yang, Chem. Soc. Rev. 2004, 33, 85–97;
- 6bV. W.-W. Yam, C.-C. Ko, N. Zhu, J. Am. Chem. Soc. 2004, 126, 12734–12735.
- 7
- 7aM. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277;
- 7bQ. Qi, C. Li, X. Liu, S. Jiang, Z. Xu, R. Lee, M. Zhu, B. Xu, W. Tian, J. Am. Chem. Soc. 2017, 139, 16036–16039;
- 7cZ. Wu, K. Pan, S. Mo, B. Wang, X. Zhao, M. Yin, ACS Appl. Mater. Interfaces 2018, 10, 30879–30886.
- 8
- 8aZ. He, L. Shan, J. Mei, H. Wang, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, X. Gu, Q. Miao, B. Z. Tang, Chem. Sci. 2015, 6, 3538–3543;
- 8bD. Ou, T. Yu, Z. Yang, T. Luan, Z. Mao, Y. Zhang, S. Liu, J. Xu, Z. Chi, M. R. Bryce, Chem. Sci. 2016, 7, 5302–5306;
- 8cT. Yu, D. Ou, L. Wang, S. Zheng, Z. Yang, Y. Zhang, Z. Chi, S. Liu, J. Xu, M. P. Aldred, Mater. Chem. Front. 2017, 1, 1900–1904;
- 8dL. Wang, T. Yu, Z. Xie, X. Chen, Z. Yang, Y. Zhang, M. P. Aldred, Z. Chi, J. Mater. Chem. C 2018, 6, 8832–8838.
- 9
- 9aH. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, X.-H. Zhou, J. Mater. Chem. 2012, 22, 11048–11053;
- 9bH. Hu, H. Zhong, C. Chen, Q. Chen, J. Mater. Chem. C 2014, 2, 3695–3702.
- 10
- 10aK. Park, K. Jung, S. J. Kwon, H. S. Jang, D. Byun, I. K. Han, H. Ko, Adv. Funct. Mater. 2016, 26, 7836–7846;
- 10bT. Sun, B. Xu, B. Chen, X. Chen, M. Li, P. Shi, F. Wang, Nanoscale 2017, 9, 2701–2705.
- 11
- 11aJ. Andres, R. D. Hersch, J.-E. Moser, A.-S. Chauvin, Adv. Funct. Mater. 2014, 24, 5029–5036;
- 11bS. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920–9940;
- 11cJ. Liu, Y. Zhuang, L. Wang, T. Zhou, N. Hirosaki, R.-J. Xie, ACS Appl. Mater. Interfaces 2018, 10, 1802–1809.
- 12
- 12aJ. Liu, H. Rijckaert, M. Zeng, K. Haustraete, B. Laforce, L. Vincze, I. Van Driessche, A. M. Kaczmarek, R. Van Deun, Adv. Funct. Mater. 2018, 28, 1707365;
- 12bW. Tian, J. Zhang, J. Yu, J. Wu, J. Zhang, J. He, F. Wang, Adv. Funct. Mater. 2018, 28, 1703548;
- 12cZ. Sun, J. Yang, L. Huai, W. Wang, Z. Ma, J. Sang, J. Zhang, H. Li, Z. Ci, Y. Wang, ACS Appl. Mater. Interfaces 2018, 10, 21451–21457;
- 12dC. Shi, X. Shen, Y. Zhu, X. Li, Z. Pang, M. Ge, ACS Appl. Mater. Interfaces 2019, 11, 18548–18554;
- 12eY. Zhang, H. Yang, H. Ma, G. Bian, Q. Zang, J. Sun, C. Zhang, Z. An, W.-Y. Wong, Angew. Chem. Int. Ed. 2019, 58, 8773–8778; Angew. Chem. 2019, 131, 8865–8870;
- 12fC. Yang, L. Gu, C. Ma, M. Gu, X. Xie, H. Shi, H. Ma, W. Yao, Z. An, W. Huang, Mater. Horiz. 2019, 6, 984–989.
- 13
- 13aK. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2016, 55, 7231–7235; Angew. Chem. 2016, 128, 7347–7351;
- 13bL. Xu, J. Chen, J. Song, J. Li, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, H. Zeng, ACS Appl. Mater. Interfaces 2017, 9, 26556–26564;
- 13cJ.-C. Zhang, C. Pan, Y.-F. Zhu, L.-Z. Zhao, H.-W. He, X. Liu, J. Qiu, Adv. Mater. 2018, 30, 1804644.
- 14J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740–1741.