Merging Photocatalysis with Electrochemistry: The Dawn of a new Alliance in Organic Synthesis
Dr. Luca Capaldo
PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorLorenzo L. Quadri
PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorCorresponding Author
Prof. Davide Ravelli
PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorDr. Luca Capaldo
PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorLorenzo L. Quadri
PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorCorresponding Author
Prof. Davide Ravelli
PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorGraphical Abstract
Abstract
The merging of a homogeneous photocatalytic system with an electrochemical cell, having exchanged electrons as the only common point, has been recently demonstrated. This combination opens unexplored pathways in synthesis and allowed net-oxidative photocatalytic processes to be realized in the absence of a chemical oxidant, including: 1) the C−H alkylation of heteroarenes and 2) the coupling of azoles with arenes in the presence of an electrogenerated photocatalyst.
References
- 1
- 1a Reviews of Reactive Intermediate Chemistry (Eds.: ), Wiley, Hoboken, 2007;
- 1b Photochemically-Generated Intermediates in Synthesis (Eds.: ), Wiley, Hoboken, 2013.
- 2
- 2aM. A. Ischay, T. P. Yoon, Eur. J. Org. Chem. 2012, 3359–3372;
- 2b Radicals in Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2001.
- 3E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–308.
- 4
- 4a Visible Light Photocatalysis in Organic Chemistry (Eds.: ), Wiley, Hoboken, 2018;
- 4b Chemical Photocatalysis (Ed.: ), De Gruyter, Berlin, 2013;
- 4cD. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116, 9850–9913;
- 4dN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166;
- 4eC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 4fJ. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828–6838; Angew. Chem. 2012, 124, 6934–6944.
- 5
- 5a Organic Electrochemistry: Revised and Expanded, 5th ed. ), CRC, Boca Raton, 2015;
- 5bM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 5cA. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594–5619; Angew. Chem. 2018, 130, 5694–5721;
- 5dS. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018, 118, 6706–6765;
- 5eJ.-i. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2018, 118, 4702–4730;
- 5fR. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521;
- 5gJ. E. Nutting, M. R. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834–4885;
- 5hN. Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086–7103.
- 6
- 6aR. H. Verschueren, W. M. De Borggraeve, Molecules 2019, 24, 2122;
- 6bH. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev. 2019, 119, 6769–6787.
- 7H. Yan, Z.-W. Hou, H.-C. Xu, Angew. Chem. Int. Ed. 2019, 58, 4592–4595; Angew. Chem. 2019, 131, 4640–4643.
- 8H. Huang, Z. M. Strater, M. Rauch, J. Shee, T. J. Sisto, C. Nuckolls, T. H. Lambert, Angew. Chem. Int. Ed. 2019, 58, 13318–13322; Angew. Chem. 2019, 131, 13452–13456.
- 9The IUPAC recommends the use of the term “photoelectrochemistry” for any “field of chemistry employing techniques which combine photochemical and electrochemical methods”. See: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught, A. Wilkinson, Blackwell Scientific Publications, Oxford, 1997.
- 10
- 10aG. G. Bessegato, T. T. Guaraldo, J. F. de Brito, M. F. Brugnera, M. V. B. Zanoni, Electrocatalysis 2015, 6, 415–441;
- 10bL. Zhang, L. Liardet, J. Luo, D. Ren, M. Grätzel, X. Hu, Nat. Catal. 2019, 2, 366–373;
- 10cH. Tateno, S. Iguchi, Y. Miseki, K. Sayama, Angew. Chem. Int. Ed. 2018, 57, 11238–11241; Angew. Chem. 2018, 130, 11408–11411;
- 10dT. Li, T. Kasahara, J. He, K. E. Dettelbach, G. M. Sammis, C. P. Berlinguette, Nat. Commun. 2017, 8, 390.
- 11J. K. Matsui, D. N. Primer, G. A. Molander, Chem. Sci. 2017, 8, 3512–3522.
- 12N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349, 1326–1330.
- 13
- 13aI. Ghosh, I. T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–728;
- 13bI. Ghosh, B. König, Angew. Chem. Int. Ed. 2016, 55, 7676–7679; Angew. Chem. 2016, 128, 7806–7810;
- 13cM. Neumeier, D. Sampedro, M. Májek, V. A. de la Peña O'Shea, A. Jacobi von Wangelin, R. Pérez-Ruiz, Chem. Eur. J. 2018, 24, 105–108.