Dopant-Free Squaraine-Based Polymeric Hole-Transporting Materials with Comprehensive Passivation Effects for Efficient All-Inorganic Perovskite Solar Cells
Qi Xiao
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJingjing Tian
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Qifan Xue
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorJing Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorProf. Bijin Xiong
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorMengmeng Han
Department of Chemistry, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorProf. Zhen Li
Department of Chemistry, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorProf. Zonglong Zhu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hin-Lap Yip
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhong'an Li
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorQi Xiao
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJingjing Tian
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Qifan Xue
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorJing Wang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorProf. Bijin Xiong
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorMengmeng Han
Department of Chemistry, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorProf. Zhen Li
Department of Chemistry, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorProf. Zonglong Zhu
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hin-Lap Yip
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhong'an Li
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorGraphical Abstract
Squaring the hole: Using N,N-diarylanilinosquaraines as the comonomers gives polysquaraine hole-transporting materials (HTMs) that have very high hole mobility. As a dopant-free HTM for α-CsPbI2Br-based all-inorganic perovskite solar cells, the power conversion efficiency (PCE) can reach 15.5 %, among the best for all-inorganic PVSCs.
Abstract
Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant-free HTMs for α-CsPbI2Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201907331-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1https://www.nrel.gov/pv/cell-efficiency.html.
- 2
- 2aH. R. Snaith, Nat. Mater. 2018, 18, 372–376;
- 2bL. Meng, J. You, Y. Yang, Nat. Commun. 2018, 9, 5265;
- 2cC. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Chem. Rev. 2019, 119, 3418–3451;
- 2dF. Wang, Y. Cao, C. Chen, Q. Chen, X. Wu, X. Li, T. Qin, W. Huang, Adv. Funct. Mater. 2018, 28, 1803753.
- 3A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036–3103.
- 4
- 4aJ. Zhang, G. Hodes, Z. Jin, S. Liu, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201901081; Angew. Chem. 2019, https://doi.org/10.1002/ange.201901081;
- 4bG. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688–19695;
- 4cS. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba, A. Abate, Adv. Energy Mater. 2018, 8, 1802060.
- 5
- 5aJ. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829–15832;
- 5bL. A. Frolova, D. V. Anokhin, A. A. Piryazev, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, P. A. Troshin, J. Phys. Chem. Lett. 2017, 8, 67–72;
- 5cC. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, J. Am. Chem. Soc. 2018, 140, 3825–3828;
- 5dJ. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem. Int. Ed. 2018, 57, 3787–3791; Angew. Chem. 2018, 130, 3849–3853;
- 5eJ. Duan, T. Hu, Y. Zhao, B. He, Q. Tang, Angew. Chem. Int. Ed. 2018, 57, 5746–5749; Angew. Chem. 2018, 130, 5848–5851;
- 5fP. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Nat. Commun. 2018, 9, 2225.
- 6
- 6aY. Wang, T. Zhang, M. Kan, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 12345–12348;
- 6bW. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li, Joule 2019, 3, 191–204;
- 6cJ. Tian, Q. Xue, X. Tang, Y. Chen, N. Li, Z. Hu, T. Shi, X. Wang, F. Huang, C. J. Brabec, H. L. Yip, Y. Cao, Adv. Mater. 2019, 31, 1901152.
- 7B. Roose, Q. Wang, A. Abate, Adv. Energy Mater. 2019, 9, 1803140.
- 8
- 8aJ. P. Bastos, U. W. Paetzold, R. Gehlhaar, W. Qiu, D. Cheyns, S. Surana, V. Spampinato, T. Aernouts, J. Poortmans, Adv. Energy Mater. 2018, 8, 1800554;
- 8bS. Wang, Z. Huang, X. Wang, Y. Li, M. Günther, S. Valenzuela, P. Parikh, A. Cabreros, W. Xiong, Y. S. Meng, J. Am. Chem. Soc. 2018, 140, 16720–16730;
- 8cJ. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, N. Martín, Chem. Soc. Rev. 2018, 47, 8541–8571.
- 9
- 9aJ. Yuan, X. Ling, D. Yang, F. Li, S. Zhou, J. Shi, Y. Qian, J. Hu, Y. Sun, Y. Yang, X. Gao, S. Duhm, Q. Zhang, W. Ma, Joule 2018, 2, 2450–2463;
- 9bD. Zhang, P. Xu, T. Wu, Y. Ou, X. Yang, A. Sun, B. Cui, H. Sun, Y. Hua, J. Mater. Chem. A 2019, 7, 5221–5226.
- 10
- 10aJ. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 14009–14012;
- 10bY. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, S. Zhang, ACS Energy Lett. 2017, 2, 2219–2227;
- 10cJ. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, Nano Lett. 2017, 17, 2028–2033;
- 10dF. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, C. H. Ng, Y. Zhang, Q. Shen, S. Hayase, Angew. Chem. Int. Ed. 2018, 57, 12745–12749; Angew. Chem. 2018, 130, 12927–12931.
- 11
- 11aA. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92–95;
- 11bT. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Sci. Adv. 2017, 3, e1700841;
- 11cH. Bian, D. Bai, Z. Jin, K. Wang, L. Liang, H. Wang, J. Zhang, Q. Wang, S. Liu, Joule 2018, 2, 1500–1510;
- 11dY. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, J. Chen, Joule 2018, 2, 1356–1368.
- 12
- 12aB. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nat. Commun. 2018, 9, 1076;
- 12bQ. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen, X. Yong, S. A. T. Redfern, H. Wei, H. Wang, H. Shen, W. Zhang, W. Zheng, H. Zhang, J. S. Tse, B. Yang, Adv. Mater. 2018, 30, 1705393;
- 12cT. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, L. Han, Adv. Mater. 2019, 31, 1900605;
- 12dG. Yin, H. Zhao, H. Jiang, S. Yuan, T. Niu, K. Zhao, Z. Liu, S. Li, Adv. Funct. Mater. 2018, 28, 1803269;
- 12eZ. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng, R. Liu, Y. Wang, A. Hagfeldt, G. Cui, S. Pang, Angew. Chem. Int. Ed. 2019, 58, 5587–5591; Angew. Chem. 2019, 131, 5643–5647.
- 13
- 13aD. Saccone, S. Galliano, N. Barbero, P. Quagliotto, G. Viscardi, C. Barolo, Eur. J. Org. Chem. 2016, 2244–2259;
- 13bS. Sreejith, P. Carol, P. Chithra, A. Ajayaghosh, J. Mater. Chem. 2008, 18, 264–274.
- 14J. Eldo, A. Ajayaghosh, Chem. Mater. 2002, 14, 410–418.
- 15Q. Xiao, F. Wu, M. Han, Z. Li, L. Zhu, Z. A. Li, J. Mater. Chem. A 2018, 6, 13644–13651.
- 16Z. Wang, A. Pradhan, M. A. kamarudin, M. Pandey, S. S. Pandey, P. Zhang, C. Ng, A. S. M. Tripathi, T. Ma, S. Hayase, ACS Appl. Mater. Interfaces 2019, 11, 10012–10020.
- 17
- 17aG. Chen, H. Sasabe, T. Igarashi, Z. Hong, J. Kido, J. Mater. Chem. A 2015, 3, 14517–14534;
- 17bM. Gsänger, D. Bialas, L. Huang, M. Stolte, F. Würthner, Adv. Mater. 2016, 28, 3615–3645.
- 18
- 18aS. Wang, L. Hall, V. V. Diev, R. Haiges, G. Wei, X. Xiao, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Chem. Mater. 2011, 23, 4789–4798;
- 18bG. Wei, X. Xiao, S. Wang, K. Sun, K. J. Bergemann, M. E. Thompson, S. R. Forrest, ACS Nano 2012, 6, 972–978.
- 19Y. Li, M. Gu, Z. Pan, B. Zhang, X. Yang, J. Gu, Y. Chen, J. Mater. Chem. A 2017, 5, 10798–10814.
- 20
- 20aX. Liu, X. Zheng, Y. Wang, Z. Chen, F. Yao, Q. Zhang, G. Fang, Z.-K. Chen, W. Huang, Z.-X. Xu, ChemSusChem 2017, 10, 2833–2838;
- 20bX. Liu, E. Rezaee, H. Shan, J. Xu, Y. Zhang, Y. Feng, J. Dai, Z.-K. Chen, W. Huang, Z.-X. Xu, J. Mater. Chem. C 2018, 6, 4706–4713.
- 21D. Yang, Z. Guan, L. Yang, Y. Huang, Q. Wei, Z. Lu, J. Yu, Sol. Energy Mater. Sol. Cells 2012, 105, 220–228.
- 22S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P. Gratia, K. Rakstys, S. A. Al-Muhtaseb, C. Ludwig, J. Ko, M. K. Nazeeruddin, Adv. Mater. 2017, 29, 1606555.
- 23
- 23aK. Rakstys, S. Paek, P. Gao, P. Gratia, T. Marszalek, G. Grancini, K. T. Cho, K. Genevicius, V. Jankauskas, W. Pisula, M. K. Nazeeruddin, J. Mater. Chem. A 2017, 5, 7811–7815;
- 23bJ. Lee, M. Malekshahi Byranvand, G. Kang, S. Y. Son, S. Song, G. W. Kim, T. Park, J. Am. Chem. Soc. 2017, 139, 12175–12181;
- 23cK. Kranthiraja, K. Gunasekar, H. Kim, A. N. Cho, N. G. Park, S. Kim, B. J. Kim, R. Nishikubo, A. Saeki, M. Song, S. H. Jin, Adv. Mater. 2017, 29, 1700183.
- 24L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H. L. Yip, Y. Cao, Adv. Mater. 2018, 30, 1802509.
- 25
- 25aN. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano 2014, 8, 9815–9821;
- 25bH. Zhang, Y. Wu, C. Shen, E. Li, C. Yan, W. Zhang, H. Tian, L. Han, W.-H. Zhu, Adv. Energy Mater. 2019, 9, 1803573;
- 25cD. E. M. Rojas, K. T. Cho, Y. Zhang, M. Urbani, N. Tabet, G. de la Torre, M. K. Nazeeruddin, T. Torres, Adv. Energy Mater. 2018, 8, 1800681.
- 26
- 26aY. H. Lee, J. Luo, M.-K. Son, P. Gao, K. T. Cho, J. Seo, S. M. Zakeeruddin, M. Grätzel, M. K. Nazeeruddin, Adv. Mater. 2016, 28, 3966–3972;
- 26bE. Aydin, M. D. Bastiani, S. D. Wolf, Adv. Mater. 2019, 31, 1900428.