When Nanozymes Meet Single-Atom Catalysis
Lei Jiao
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorHongye Yan
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorYu Wu
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorProf. Wenling Gu
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Chengzhou Zhu
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorDr. Dan Du
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164 USA
Search for more papers by this authorCorresponding Author
Prof. Yuehe Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164 USA
Search for more papers by this authorLei Jiao
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorHongye Yan
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorYu Wu
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorProf. Wenling Gu
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Chengzhou Zhu
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079 P.R. China
Search for more papers by this authorDr. Dan Du
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164 USA
Search for more papers by this authorCorresponding Author
Prof. Yuehe Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164 USA
Search for more papers by this authorGraphical Abstract
Single-atom nanozymes contain atomically active sites and they are similar to natural metalloenzymes; they hold great promise in sensing, degradation of organic pollutants, and in therapeutic applications. Moreover, single-atom catalysts help to unravel structure–activity relationships and thereby uncover the nature of biocatalysts at a single-atom scale.
Abstract
Nanomaterials with enzyme-like activities, coined nanozymes, have been researched widely as they offer unparalleled advantages in terms of low cost, superior activity, and high stability. The complex structure and composition of nanozymes has led to extensive investigation of their catalytic sites at an atomic scale, and to an in-depth understanding of the biocatalysis occurring. Single-atom catalysts (SACs), characterized by atomically dispersed active sites, have provided opportunities for mimicking metalloprotease and for bridging the gap between natural enzymes and nanozymes. In this Minireview, we illustrate the unique properties of nanozymes and we discuss recent advances in the synthesis, characterization, and applications of SACs. Subsequently, we outline the impressive progress made in single-atom nanozymes and we discuss their applications in sensing, degradation of organic pollutants, and in therapeutic roles. Finally, we present the major challenges and opportunities remaining for a successful marriage of nanozymes and SACs.
Conflict of interest
The authors declare no conflict of interest.
References
- 1Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, TrAC Trends Anal. Chem. 2018, 105, 218–224.
- 2X. Lian, Y. Huang, Y. Zhu, Y. Fang, R. Zhao, E. Joseph, J. Li, J.-P. Pellois, H.-C. Zhou, Angew. Chem. Int. Ed. 2018, 57, 5725–5730; Angew. Chem. 2018, 130, 5827–5832.
- 3H. Wei, E. Wang, Chem. Soc. Rev. 2013, 42, 6060–6093.
- 4L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2007, 2, 577.
- 5J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004–1076.
- 6X. Wang, X. J. Gao, L. Qin, C. Wang, L. Song, Y.-N. Zhou, G. Zhu, W. Cao, S. Lin, L. Zhou, K. Wang, H. Zhang, Z. Jin, P. Wang, X. Gao, H. Wei, Nat. Commun. 2019, 10, 704.
- 7Q. Shi, Y. Song, C. Zhu, H. Yang, D. Du, Y. Lin, ACS Appl. Mater. Interfaces 2015, 7, 24288–24295.
- 8Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi, A. Minerick, D. Tang, X. Xia, Nano Lett. 2017, 17, 5572–5579.
- 9B. Liu, J. Liu, Nano Res. 2017, 10, 1125–1148.
- 10Y. Zhao, M. Yang, Q. Fu, H. Ouyang, W. Wen, Y. Song, C. Zhu, Y. Lin, D. Du, Anal. Chem. 2018, 90, 7391–7398.
- 11L. Jiao, L. Zhang, W. Du, H. Li, D. Yang, C. Zhu, Nanoscale 2019, 11, 8798–8802.
- 12Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang, Y. Huang, K. Dong, J. Ren, X. Qu, ACS Nano 2018, 12, 651–661.
- 13K. Fan, J. Xi, L. Fan, P. Wang, C. Zhu, Y. Tang, X. Xu, M. Liang, B. Jiang, X. Yan, L. Gao, Nat. Commun. 2018, 9, 1440.
- 14R. Zeng, Z. Luo, L. Zhang, D. Tang, Anal. Chem. 2018, 90, 12299–12306.
- 15Z. Yu, Y. Tang, G. Cai, R. Ren, D. Tang, Anal. Chem. 2019, 91, 1222–1226.
- 16Y. Huang, J. Ren, X. Qu, Chem. Rev. 2019, 119, 4357–4412.
- 17Q. Fu, Z. Wu, D. Du, C. Zhu, Y. Lin, Y. Tang, ACS Sens. 2017, 2, 789–795.
- 18N. Singh, M. A. Savanur, S. Srivastava, P. D′Silva, G. Mugesh, Angew. Chem. Int. Ed. 2017, 56, 14267–14271; Angew. Chem. 2017, 129, 14455–14459.
- 19L. Jiao, L. Zhang, W. Du, H. Li, D. Yang, C. Zhu, Nanoscale 2018, 10, 21893–21897.
- 20S. Ghosh, P. Roy, N. Karmodak, E. D. Jemmis, G. Mugesh, Angew. Chem. Int. Ed. 2018, 57, 4510–4515; Angew. Chem. 2018, 130, 4600–4605.
- 21J. Niu, Y. Sun, F. Wang, C. Zhao, J. Ren, X. Qu, Chem. Mater. 2018, 30, 7027–7033.
- 22Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang, Z. Liu, J. Ren, X. Qu, Adv. Funct. Mater. 2019, 29, 1900518.
- 23W. Lai, Q. Wei, M. Xu, J. Zhuang, D. Tang, Biosens. Bioelectron. 2017, 89, 645–651.
- 24L. Gao, K. Fan, X. Yan, Theranostics 2017, 7, 3207–3227.
- 25X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu, X. Gao, J. Am. Chem. Soc. 2015, 137, 15882–15891.
- 26C. Ge, R. Wu, Y. Chong, G. Fang, X. Jiang, Y. Pan, C. Chen, J.-J. Yin, Adv. Funct. Mater. 2018, 28, 1801484.
- 27Y. Chong, X. Dai, G. Fang, R. Wu, L. Zhao, X. Ma, X. Tian, S. Lee, C. Zhang, C. Chen, Z. Chai, C. Ge, R. Zhou, Nat. Commun. 2018, 9, 4861.
- 28J. Li, W. Liu, X. Wu, X. Gao, Biomaterials 2015, 48, 37–44.
- 29H. Sun, A. Zhao, N. Gao, K. Li, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2015, 54, 7176–7180; Angew. Chem. 2015, 127, 7282–7286.
- 30G. Fang, W. Li, X. Shen, J. M. Perez-Aguilar, Y. Chong, X. Gao, Z. Chai, C. Chen, C. Ge, R. Zhou, Nat. Commun. 2018, 9, 129.
- 31H. Wang, K. Wan, X. Shi, Adv. Mater. 2018, 1805368.
- 32B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
- 33X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 34L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981–5079.
- 35A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65–81.
- 36J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, B. Zhang, J. Am. Chem. Soc. 2018, 140, 3876–3879.
- 37P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 2019, 56, 127–137.
- 38J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G. E. Sterbinsky, Z. Feng, D. Su, K. L. More, G. Wang, Z. Wang, G. Wu, Nat. Catal. 2018, 1, 935–945.
- 39Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 2018, 9, 1460.
- 40C. Zhu, Q. Shi, B. Z. Xu, S. Fu, G. Wan, C. Yang, S. Yao, J. Song, H. Zhou, D. Du, S. P. Beckman, D. Su, Y. Lin, Adv. Energy Mater. 2018, 8, 1801956.
- 41S. Liang, C. Hao, Y. Shi, ChemCatChem 2015, 7, 2559–2567.
- 42J. Liu, M. Jiao, L. Lu, H. M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D.-j. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, Nat. Commun. 2017, 8, 15938.
- 43N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2016, 7, 13638.
- 44S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem. Int. Ed. 2016, 55, 2058–2062; Angew. Chem. 2016, 128, 2098–2102.
- 45Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242–1264.
- 46B.-W. Zhang, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Small Methods 2019, 1800497.
- 47H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. Dong Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Nat. Commun. 2015, 6, 8668.
- 48J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 2018, 30, 1705369.
- 49S. Fu, C. Zhu, D. Su, J. Song, S. Yao, S. Feng, M. H. Engelhard, D. Du, Y. Lin, Small 2018, 14, 1703118.
- 50C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 8078–8081.
- 51C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H.-T. Kim, K. J. J. Mayrhofer, H. Kim, M. Choi, Nat. Commun. 2016, 7, 10922.
- 52P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 10800–10805; Angew. Chem. 2016, 128, 10958–10963.
- 53L. Zhao, Y. Zhang, L.-B. Huang, X.-Z. Liu, Q.-H. Zhang, C. He, Z.-Y. Wu, L.-J. Zhang, J. Wu, W. Yang, L. Gu, J.-S. Hu, L.-J. Wan, Nat. Commun. 2019, 10, 1278.
- 54L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, Nat.Commun. 2016, 7, 10667.
- 55M. Zhang, Y.-G. Wang, W. Chen, J. Dong, L. Zheng, J. Luo, J. Wan, S. Tian, W.-C. Cheong, D. Wang, Y. Li, J. Am. Chem. Soc. 2017, 139, 10976–10979.
- 56S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W.-C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Nat. Nanotechnol. 2018, 13, 856–861.
- 57J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N. Zhang, L. Xiong, S. Li, B. Y. Xia, G. Feng, M. Liu, L. Huang, Adv. Energy Mater. 2019, 9, 1900149.
- 58Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders, M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm, R. De Marco, H.-M. Cheng, S.-Z. Yang, S. P. Jiang, Adv. Mater. 2018, 30, 1706287.
- 59C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 2017, 56, 13944–13960; Angew. Chem. 2017, 129, 14132–14148.
- 60L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, Y. Wang, Science 2017, 358, 1419–1423.
- 61J. Shi, Chem 2017, 2, 468–469.
- 62M. Yang, J. Liu, S. Lee, B. Zugic, J. Huang, L. F. Allard, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 2015, 137, 3470–3473.
- 63Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 6937–6941; Angew. Chem. 2017, 129, 7041–7045.
- 64J. G. Chen, Joule 2018, 2, 587–589.
- 65K. Jiang, S. Siahrostami, A. J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J. K. Nørskov, Y. Cui, H. Wang, Chem 2017, 3, 950–960.
- 66J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985–992.
- 67Y. Peng, B. Lu, S. Chen, Adv. Mater. 2018, 30, 1801995.
- 68A. B. McQuarters, M. W. Wolf, A. P. Hunt, N. Lehnert, Angew. Chem. Int. Ed. 2014, 53, 4750–4752;
10.1002/anie.201402404 Google ScholarAngew. Chem. 2014, 126, 4846–4848.
- 69X. Huang, J. T. Groves, Chem. Rev. 2018, 118, 2491–2553.
- 70S. N. Natoli, J. F. Hartwig, Acc. Chem. Res. 2019, 52, 326–335.
- 71W. Ma, J. Mao, X. Yang, C. Pan, W. Chen, M. Wang, P. Yu, L. Mao, Y. Li, Chem. Commun. 2019, 55, 159–162.
- 72W. Yang, T. Huang, M. Zhao, F. Luo, W. Weng, Q. Wei, Z. Lin, G. Chen, Talanta 2017, 164, 1–6.
- 73E. Ju, K. Dong, Z. Chen, Z. Liu, C. Liu, Y. Huang, Z. Wang, F. Pu, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2016, 55, 11467–11471; Angew. Chem. 2016, 128, 11639–11643.
- 74L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Nano Energy 2018, 50, 691–698.
- 75R. Lin, D. Albani, E. Fako, S. K. Kaiser, O. V. Safonova, N. López, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2019, 58, 504–509; Angew. Chem. 2019, 131, 514–519.
- 76S. Wang, R. Cazelles, W.-C. Liao, M. Vázquez-González, A. Zoabi, R. Abu-Reziq, I. Willner, Nano Lett. 2017, 17, 2043–2048.
- 77M. Vázquez-González, W.-C. Liao, R. Cazelles, S. Wang, X. Yu, V. Gutkin, I. Willner, ACS Nano 2017, 11, 3247–3253.
- 78Y. Lin, P. Kannan, Y. Zeng, B. Qiu, L. Guo, Z. Lin, Sens. Actuators B 2019, 283, 138–145.
- 79W.-H. Chen, M. Vázquez-González, A. Kozell, A. Cecconello, I. Willner, Small 2018, 14, 1703149.
- 80Y. Xiong, Y. Qin, L. Su, F. Ye, Chem. Eur. J. 2017, 23, 11037–11045.
- 81L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Sci. Adv. 2019, 5, eaav 5490.
- 82Y. Wang, Z. Zhang, G. Jia, L. Zheng, J. Zhao, X. Cui, Chem. Commun. 2019, 55, 5271–5274.
- 83N. Cheng, J.-C. Li, D. Liu, Y. Lin, D. Du, Small 2019, 1901485.
- 84A. M. Klibanov, E. D. Morris, Enzyme Microb. Technol. 1981, 3, 119–122.
- 85F. He, L. Mi, Y. Shen, T. Mori, S. Liu, Y. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 35327–35333.
- 86S. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J. T. Miller, S. Miao, J. Wang, X. Guo, ACS Nano 2018, 12, 9441–9450.
- 87C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li, T. Yuan, J. Wang, Y. Qu, X. Wang, F. Zhou, Q. Xu, S. Wang, M. Chen, W. Wang, Y. Li, T. Yao, Y. Wu, Y. Li, Chem. Commun. 2019, 55, 2285–2288.
- 88X. Li, X. Huang, S. Xi, S. Miao, J. Ding, W. Cai, S. Liu, X. Yang, H. Yang, J. Gao, J. Wang, Y. Huang, T. Zhang, B. Liu, J. Am. Chem. Soc. 2018, 140, 12469–12475.
- 89M. Huo, L. Wang, Y. Wang, Y. Chen, J. Shi, ACS Nano 2019, 13, 2643–2653.
- 90B. Xu, H. Wang, W. Wang, L. Gao, S. Li, X. Pan, H. Wang, H. Yang, X. Meng, Q. Wu, L. Zheng, S. Chen, X. Shi, K. Fan, X. Yan, H. Liu, Angew. Chem. Int. Ed. 2019, 58, 4911–4916; Angew. Chem. 2019, 131, 4965–4970.
- 91S. Wang, L. Shang, L. Li, Y. Yu, C. Chi, K. Wang, J. Zhang, R. Shi, H. Shen, G. I. N. Waterhouse, S. Liu, J. Tian, T. Zhang, H. Liu, Adv. Mater. 2016, 28, 8379–8387.
Citing Literature
February 10, 2020
Pages 2565-2576