Inexpensive Hole-Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells
Titas Braukyla
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
These authors contributed equally to this work.
Search for more papers by this authorRui Xia
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorMaryte Daskeviciene
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
Search for more papers by this authorTadas Malinauskas
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
Search for more papers by this authorAlytis Gruodis
Institute of Chemical Physics, Vilnius University, Sauletekio al.3, Vilnius, 10257 Lithuania
Search for more papers by this authorVygintas Jankauskas
Institute of Chemical Physics, Vilnius University, Sauletekio al.3, Vilnius, 10257 Lithuania
Search for more papers by this authorZhaofu Fei
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorCristina Momblona
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
Search for more papers by this authorCristina Roldán-Carmona
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
Search for more papers by this authorPaul J. Dyson
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Vytautas Getautis
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
Search for more papers by this authorCorresponding Author
Mohammad Khaja Nazeeruddin
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
Search for more papers by this authorTitas Braukyla
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
These authors contributed equally to this work.
Search for more papers by this authorRui Xia
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorMaryte Daskeviciene
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
Search for more papers by this authorTadas Malinauskas
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
Search for more papers by this authorAlytis Gruodis
Institute of Chemical Physics, Vilnius University, Sauletekio al.3, Vilnius, 10257 Lithuania
Search for more papers by this authorVygintas Jankauskas
Institute of Chemical Physics, Vilnius University, Sauletekio al.3, Vilnius, 10257 Lithuania
Search for more papers by this authorZhaofu Fei
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorCristina Momblona
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
Search for more papers by this authorCristina Roldán-Carmona
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
Search for more papers by this authorPaul J. Dyson
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Vytautas Getautis
Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania
Search for more papers by this authorCorresponding Author
Mohammad Khaja Nazeeruddin
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Rue de l'Industry 17, 1951 Sion, Switzerland
Search for more papers by this authorGraphical Abstract
Abstract
The synthesis of three enamine hole-transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three-step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time-consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro-OMeTAD in efficiency, and showing markedly superior long-term stability in non-encapsulated devices. In dopant-free PSCs, HTM3 outperformed spiro-OMeTAD by a factror of 1.6. The high glass-transition temperature (Tg=176 °C) of HTM3 also suggests promising perspectives in device applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201903705-sup-0001-misc_information.pdf2.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. J. Snaith, Nat. Mater. 2018, 17, 372.
- 2M. A. Green, A. Ho-Baillie, ACS Energy Lett. 2017, 2, 822–830.
- 3N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, Nat. Energy 2018, 3, 682–689.
- 4H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, Sci. Rep. 2012, 2, 591.
- 5N.-G. Park, J. Phys. Chem. Lett. 2013, 4, 2423–2429.
- 6S. Park, J. H. Heo, C. H. Cheon, H. Kim, S. H. Im, H. J. Son, J. Mater. Chem. A 2015, 3, 24215–24220.
- 7O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat. Photonics 2014, 8, 128.
- 8S. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2014, 53, 2812–2824; Angew. Chem. 2014, 126, 2854–2867.
- 9J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2011, 133, 18042–18045.
- 10S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341–344.
- 11G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344–347.
- 12Z. Yu, L. Sun, Adv. Energy Mater. 2015, 5, 1500213.
- 13H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci. 2016, 9, 12–30.
- 14A. Binek, M. L. Petrus, N. Huber, H. Bristow, Y. Hu, T. Bein, P. Docampo, ACS Appl. Mater. Interfaces 2016, 8, 12881–12886.
- 15T. Malinauskas, M. Saliba, T. Matsui, M. Daskeviciene, S. Urnikaite, P. Gratia, R. Send, H. Wonneberger, I. Bruder, M. Graetzel, Energy Environ. Sci. 2016, 9, 1681–1686.
- 16K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S. Paek, V. Jankauskas, M. K. Nazeeruddin, Angew. Chem. Int. Ed. 2016, 55, 7464–7468; Angew. Chem. 2016, 128, 7590–7594.
- 17M. Maciejczyk, A. Ivaturi, N. Robertson, J. Mater. Chem. A 2016, 4, 4855–4863.
- 18B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt, L. Sun, Energy Environ. Sci. 2016, 9, 873–877.
- 19D. Bi, B. Xu, P. Gao, L. Sun, M. Graetzel, A. Hagfeldt, Nano Energy 2016, 23, 138–144.
- 20P. Gratia, A. Magomedov, T. Malinauskas, M. Daskeviciene, A. Abate, S. Ahmad, M. Grätzel, V. Getautis, M. K. Nazeeruddin, Angew. Chem. Int. Ed. 2015, 54, 11409–11413; Angew. Chem. 2015, 127, 11571–11575.
- 21A. Magomedov, N. Sakai, E. Kamarauskas, G. Jokubauskaitė, M. Franckevičius, V. Jankauskas, H. J. Snaith, V. Getautis, Chem. Asian J. 2017, 12, 958–962.
- 22Š. Daškevičiūtė, N. Sakai, M. Franckevičius, M. Daškevičienė, A. Magomedov, V. Jankauskas, H. J. Snaith, V. Getautis, Adv. Sci. 2018, 5, 1700811.
- 23M. Daskeviciene, S. Paek, Z. Wang, T. Malinauskas, G. Jokubauskaite, K. Rakstys, K. T. Cho, A. Magomedov, V. Jankauskas, S. Ahmad, H. J. Snaith, V. Getautis, M. K. Nazeeruddin, Nano Energy 2017, 32, 551–557.
- 24C. L. Ramírez, C. Pegoraro, L. Trupp, A. Bruttomesso, V. Amorebieta, D. M. A. Vera, A. R. Parise, Phys. Chem. Chem. Phys. 2011, 13, 20076.
- 25T. P. Osedach, T. L. Andrew, V. Bulovic, Energy Environ. Sci. 2013, 6, 711.
- 26M. L. Petrus, T. Bein, T. J. Dingemans, P. Docampo, J. Mater. Chem. A 2015, 3, 12159.
- 27M. Degbia, M. Ben Manaa, B. Schmaltz, N. Berton, J. Boucle, R. Antony, F. Tran Van, Mater. Sci. Semicond. Process. 2016, 43, 90–95.
- 28O. Usluer, M. Cloutet, G. Hadziioannou, ACS Macro Lett. 2014, 3, 1134–1138.
- 29M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc. Wallingford, CT, USA, 2013.
- 30K. T. Cho, O. Trukhina, C. Roldán-Carmona, M. Ince, P. Gratia, G. Grancini, P. Gao, T. Marszalek, W. Pisula, P. Y. Reddy, Adv. Energy Mater. 2017, 7, 1601733.
- 31N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- 32V. V. Pavlishchuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97–102.
- 33H. Reiss, A. Heller, J. Phys. Chem. 1985, 89, 4207–4213.
- 34M. M. Tavakoli, F. Giordano, S. M. Zakeeruddin, M. Grätzel, Nano Lett. 2018, 18, 2428–2434.
- 35M. Salado, R. K. Kokal, L. Calio, S. Kazim, M. Deepa, S. Ahmad, Phys. Chem. Chem. Phys. 2017, 19, 22905–22914.
- 36I. Zimmermann, J. Urieta-Mora, P. Gratia, J. Aragó, G. Grancini, A. Molina-Ontoria, E. Ortí, N. Martín, M. K. Nazeeruddin, Adv. Energy Mater. 2017, 7, 1601674.
- 37S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P. Gratia, K. Rakstys, S. A. Al-Muhtaseb, Adv. Mater. 2017, 29, 1606555.
- 38P. Schulz, D. Cahen, A. Kahn, Chem. Rev. 2019, 119, 3349–3417.
- 39L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2016, 55, 14522–14545; Angew. Chem. 2016, 128, 14740–14764.