Double Perovskite LaFexNi1−xO3 Nanorods Enable Efficient Oxygen Evolution Electrocatalysis
Huaping Wang
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081 China
Search for more papers by this authorJuan Wang
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorYecan Pi
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorQi Shao
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorProf. Yueming Tan
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081 China
Search for more papers by this authorCorresponding Author
Prof. Xiaoqing Huang
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorHuaping Wang
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081 China
Search for more papers by this authorJuan Wang
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorYecan Pi
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorQi Shao
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorProf. Yueming Tan
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081 China
Search for more papers by this authorCorresponding Author
Prof. Xiaoqing Huang
College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorGraphical Abstract
Double perovskite nanorods LaFexNi1−xO3 (LFNO NRs) with reduced diameter have been successfully created and adopted as efficient OER catalysts. The optimized LFNO NRs have proper d-band electronic structure, enabling strong binding between adsorbates and NRs, which boosts their intrinsic OER activity.
Abstract
Perovskite-based electrocatalysts are one of the most promising materials for oxygen evolution reaction (OER), but their activity and durability are still far from desirable. Herein, we demonstrate that the double perovskite LaFexNi1−xO3 (LFNO) nanorods (NRs) can be adopted as highly active and stable OER electrocatalysts. The optimized LFNO-II NRs with Ni/Fe ratio of 8:2 achieve a low overpotential of 302 mV at 10 mA cm−2 and a small Tafel slope of 50 mV dec−1, outperforming those of the commercial Ir/C. The LFNO-II NRs also show high OER stability with slight current decrease after 20 h. The enhanced activity is explained by the improved surface area, tailored electronic structure as well as strong hybridization between O and Ni.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201812545-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, G. Wang, Nat. Commun. 2018, 9, 1425.
- 2K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295–295.
- 3L. Wang, X. Zheng, L. Chen, Y. Xiong, H. Xu, Angew. Chem. Int. Ed. 2018, 57, 3454–3458; Angew. Chem. 2018, 130, 3512–3516.
- 4Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, M. Tsuchiya, D. D. Fong, S. Ramanathan, Nature 2016, 534, 231–234.
- 5P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 2015, 5, 1500985.
- 6J. Liu, Y. Zheng, Y. Jiao, Z. Wang, Z. Lu, A. Vasileff, S. Z. Qiao, Small 2018, 14, 1704073.
- 7Y. Ding, Y. Niu, J. Yang, L. Ma, J. Liu, Y. Xiong, H. Xu, Small 2016, 12, 5414–5421.
- 8J. K. Hurst, Science 2010, 328, 315–316.
- 9J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G. C. Wang, S. Guo, Adv. Mater. 2017, 29, 1703798.
- 10H. He, Q. Gan, H. Wang, G.-L. Xu, X. Zhang, D. Huang, F. Fu, Y. Tang, K. Amine, M. Shao, Nano Energy 2018, 44, 217–227.
- 11R. D. L. Smith, M. S. Prevot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. Siu, S. Trudel, C. P. Berlinguette, Science 2013, 340, 60–63.
- 12T. Zhang, M.-Y. Wu, D.-Y. Yan, J. Mao, H. Liu, W.-B. Hu, X.-W. Du, T. Ling, S. Z. Qiao, Nano Energy 2018, 43, 103–109.
- 13F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 2017, 29, 1606570.
- 14J. Liu, D. Zhu, T. Ling, A. Vasileff, S. Z. Qiao, Nano Energy 2017, 40, 264–273.
- 15C. Guo, Y. Zheng, J. Ran, F. Xie, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2017, 56, 8539–8543; Angew. Chem. 2017, 129, 8659–8663.
- 16L. Zhang, J. Xiao, H. Wang, M. Shao, ACS Catal. 2017, 7, 7855–7865.
- 17J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751–756.
- 18O. Diaz-Morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk, J. Gascon, W. T. Fu, M. T. Koper, Nat. Commun. 2016, 7, 12363.
- 19X. Ge, Y. Du, B. Li, T. S. A. Hor, M. Sindoro, Y. Zong, H. Zhang, Z. Liu, ACS Catal. 2016, 6, 7865–7871.
- 20Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou, G. Zhang, H. Yang, Y. Du, Z. J. Xu, Chem. Mater. 2017, 29, 10534–10541.
- 21J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Gratzel, Science 2014, 345, 1593–1596.
- 22J. Kim, P. C. Shih, Y. Qin, Z. Al-Bardan, C. J. Sun, H. Yang, Angew. Chem. Int. Ed. 2018, 57, 13877–13881; Angew. Chem. 2018, 130, 14073–14077.
- 23J. Kim, P. C. Shih, K. C. Tsao, Y. T. Pan, X. Yin, C. J. Sun, H. Yang, J. Am. Chem. Soc. 2017, 139, 12076–12083.
- 24H. Huang, K. Li, Z. Chen, L. Luo, Y. Gu, D. Zhang, C. Ma, R. Si, J. Yang, Z. Peng, J. Zeng, J. Am. Chem. Soc. 2017, 139, 8152–8159.
- 25J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, S. Guo, Adv. Mater. 2017, 29, 1704681.
- 26J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 27Y. Peng, L. Wang, Q. Luo, Y. Cao, Y. Dai, Z. Li, H. Li, X. Zheng, W. Yan, J. Yang, J. Zeng, Chem 2018, 4, 613–625.
- 28K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Energy Environ. Sci. 2018, 11, 893–903.
- 29Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo, J. Guo, X. Huang, Angew. Chem. Int. Ed. 2017, 56, 4502–4506; Angew. Chem. 2017, 129, 4573–4577.
- 30Y. Tong, J. Wu, P. Chen, H. Liu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2018, 140, 11165–11169.
- 31B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding, D. Chen, Y. Chen, Q. Zhang, B. Doyle, X. Xiong, M. Liu, Nat. Commun. 2017, 8, 14586.
- 32X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, Z. Shao, Adv. Mater. 2016, 28, 6442–6448.
- 33L. Zhou, M. Shao, C. Zhang, J. Zhao, S. He, D. Rao, M. Wei, D. G. Evans, X. Duan, Adv. Mater. 2017, 29, 1604080.
- 34N.-I. Kim, Y. J. Sa, T. S. Yoo, S. R. Choi, R. A. Afzal, T. Choi, Y.-S. Seo, K.-S. Lee, J. Y. Hwang, W. S. Choi, S. H. Joo, J.-Y. Park, Sci. Adv. 2018, 4, eaap 9360.
- 35Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem. Int. Ed. 2018, 57, 5076–5080; Angew. Chem. 2018, 130, 5170–5174.
- 36Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X. Wang, H. Zhang, Z. C. Xu, Adv. Mater. 2018, 30, 1802912.