Diversity-Oriented Construction and Interconversion of Multicavity Supermacrocycles for Cooperative Anion–π Binding
Jian Luo
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, China
Search for more papers by this authorDr. Yu-Fei Ao
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qi-Qiang Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, China
Search for more papers by this authorCorresponding Author
Prof. Dr. De-Xian Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, China
Search for more papers by this authorJian Luo
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, China
Search for more papers by this authorDr. Yu-Fei Ao
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qi-Qiang Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, China
Search for more papers by this authorCorresponding Author
Prof. Dr. De-Xian Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, China
Search for more papers by this authorGraphical Abstract
A one-pot strategy for the diversity-oriented construction of multicavity-containing supermacrocycles and their interconversion has been developed. With large cavities and multiple electron-deficient triazines, these supermacrocycles can accommodate large organic anions through unprecedented multiple anion–π interactions.
Abstract
A one-pot strategy for the diverse construction of a series of supermacrocycles was realized using rationally designed macrocyclic precursors. The base was found to have a significant effect not only on the size distribution but also on the structure of the supermacrocycles formed. While the use of less CsF (<4.0 equiv) afforded regular supermacrocycles containing up to four macrocyclic precursor subunits, the use of more CsF (>8.0 equiv) resulted in structurally reorganized supermacrocyles featuring oxacalix[2]arene[2]triazine motifs. Base-mediated supermacrocycle-to-supermacrocycle transformations were also revealed. With large cavities and many electron-deficient triazine moieties, the supermacrocyles can accommodate large organic anions via multiple anion–π interactions as demonstrated for two supermacrocycles, which can host 2-carboxyacetate and represent the first crystallographic examples of sandwich-like structures with anion–π interactions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810836-sup-0001-misc_information.pdf9.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see:
- 1aB. P. Hay, V. S. Bryantsev, Chem. Commun. 2008, 2417;
- 1bD.-X. Wang, M.-X. Wang, Chimia 2011, 65, 939;
- 1cA. Frontera, P. Gamez, M. Mascal, T. J. Mooibroek, J. Reedijk, Angew. Chem. Int. Ed. 2011, 50, 9564; Angew. Chem. 2011, 123, 9736;
- 1dH. T. Chifotides, K. R. Dunbar, Acc. Chem. Res. 2013, 46, 894;
- 1eP. Ballester, Acc. Chem. Res. 2013, 46, 874;
- 1fM. M. Watt, M. S. Sollins, D. W. Johnson, Acc. Chem. Res. 2013, 46, 955;
- 1gA. V. Jentzsch, A. Hennig, J. Mareda, S. Matile, Acc. Chem. Res. 2013, 46, 2791;
- 1hM. Giese, M. Albrecht, K. Rissanen, Chem. Rev. 2015, 115, 8867.
- 2
- 2aM. Mascal, A. Armstrong, M. D. Bartberger, J. Am. Chem. Soc. 2002, 124, 6274;
- 2bD. Quiñonero, C. Garau, C. Rotger, A. Frontera, P. Ballester, A. Costa, P. M. Deya, Angew. Chem. Int. Ed. 2002, 41, 3389–3392;
10.1002/1521-3773(20020916)41:18<3389::AID-ANIE3389>3.0.CO;2-S CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3539–3542;
- 2cI. Alkorta, I. Rozas, J. Elguero, J. Am. Chem. Soc. 2002, 124, 8593–8598.
- 3
- 3aP. de Hoog, P. Gamez, I. Mutikainen, U. Turpeinen, J. Reedijk, Angew. Chem. Int. Ed. 2004, 43, 5815; Angew. Chem. 2004, 116, 5939;
- 3bS. Demeshko, S. Dechert, F. Meyer, J. Am. Chem. Soc. 2004, 126, 4508;
- 3cY. S. Rosokha, S. V. Lindeman, S. V. Rosokha, J. K. Kochi, Angew. Chem. Int. Ed. 2004, 43, 4650; Angew. Chem. 2004, 116, 4750;
- 3dY. J. Zhao, Y. Domoto, E. Orentas, C. Beuchat, D. Emery, J. Mareda, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2013, 52, 9940; Angew. Chem. 2013, 125, 10124;
- 3eY. J. Zhao, C. Beuchat, Y. Domoto, J. Gajewy, A. Wilson, J. Mareda, N. Sakai, S. Matile, J. Am. Chem. Soc. 2014, 136, 2101;
- 3fH. T. Chifotides, B. L. Schottel, K. R. Dunbar, Angew. Chem. Int. Ed. 2010, 49, 7202; Angew. Chem. 2010, 122, 7360;
- 3gQ. He, Y.-F. Ao, Z.-T. Huang, D.-X. Wang, Angew. Chem. Int. Ed. 2015, 54, 11785; Angew. Chem. 2015, 127, 11951;
- 3hX.-D. Wang, S. Li, Y.-F. Ao, Q.-Q. Wang, Z.-T. Huang, D.-X. Wang, Org. Biomol. Chem. 2016, 14, 330;
- 3iC. Estarellas, A. Frontera, D. Quiñonero, P. M. Deyà, Angew. Chem. Int. Ed. 2011, 50, 415; Angew. Chem. 2011, 123, 435;
- 3jM. Giese, M. Albrecht, K. Rissanen, Chem. Commun. 2016, 52, 1778.
- 4
- 4aO. B. Berryman, F. Hof, M. J. Hynes, D. W. Johnson, Chem. Commun. 2006, 506;
- 4bO. B. Berryman, A. C. Sather, B. P. Hay, J. S. Meisner, D. W. Johnson, J. Am. Chem. Soc. 2008, 130, 10895;
- 4cG. Gil-Ramírez, E. C. Escudero-Adán, J. Benet-Buchholz, P. Ballester, Angew. Chem. Int. Ed. 2008, 47, 4114; Angew. Chem. 2008, 120, 4182;
- 4dM. Mascal, I. Yakovlev, E. B. Nikitin, J. C. Fettinger, Angew. Chem. Int. Ed. 2007, 46, 8782; Angew. Chem. 2007, 119, 8938;
- 4eS. Guha, S. Saha, J. Am. Chem. Soc. 2010, 132, 17674;
- 4fS. T. Schneebeli, M. Frasconi, Z. Liu, Y. Wu, D. M. Gardner, N. L. Strutt, C. Cheng, R. Carmieli, M. R. Wasielewski, J. F. Stoddart, Angew. Chem. Int. Ed. 2013, 52, 13100; Angew. Chem. 2013, 125, 13338;
- 4gM. Giese, M. Albrecht, T. Krappitz, M. Peters, V. Gossen, G. Raabe, A. Valkonen, K. Rissanen, Chem. Commun. 2012, 48, 9983;
- 4hY. Chen, D.-X. Wang, Z.-T. Huang, M.-X. Wang, Chem. Commun. 2011, 47, 8112;
- 4iS. Li, S.-X. Fa, Q.-Q. Wang, D.-X. Wang, M.-X. Wang, J. Org. Chem. 2012, 77, 1860–1867;
- 4jQ.-H. Guo, Z.-D. Fu, L. Zhao, M.-X. Wang, Angew. Chem. Int. Ed. 2014, 53, 13548; Angew. Chem. 2014, 126, 13766;
- 4kM.-Y. Zhao, D.-X. Wang, M.-X. Wang, J. Org. Chem. 2018, 83, 1502.
- 5R. J. Fitzmaurice, G. M. Kyne, D. Douheret, J. D. Kilburn, J. Chem. Soc. Perkin Trans. 1 2002, 841.
- 6
- 6aP. D. Beer, A. D. Keefe, J. Chem. Soc. Dalton Trans. 1990, 3675;
- 6bO. Bistri, K. Mazeau, R. Auzély-Velty, M. Sollogoub, Chem. Eur. J. 2007, 13, 8847;
- 6cJ. Cheney, J.-M. Lehn, J. P. Sauvage, M. E. Stubbs, J. Chem. Soc. Chem. Commun. 1972, 1100;
- 6dC. D. Hall, A. Leineweber, J. H. R. Tucker, D. J. Villiams, J. Organomet. Chem. 1996, 523, 13;
- 6eF. Kotzyba-Hibert, J.-M. Lehn, P. Vierling, Tetrahedron Lett. 1980, 21, 941;
- 6fW. Mattew Leevy, J. E. Huettner, R. Pajewski, P. H. Schlesinger, G. W. Gokel, J. Am. Chem. Soc. 2004, 126, 15747;
- 6gF. Vögtle, H. Puff, E. Friedrichs, W. M. Müller, Angew. Chem. Int. Ed. Engl. 1982, 21, 431; Angew. Chem. 1982, 94, 443;
- 6hS. R. Wilson, M. L. Tulchinsky, J. Org. Chem. 1993, 58, 1407;
- 6iJ.-M. Liu, Y.-S. Zheng, Q.-Y. Zheng, J. Xie, M.-X. Wang, Z.-T. Huang, Tetrahedron 2002, 58, 3729;
- 6jV. Valderrey, E. C. Escudero-Adán, P. Ballester, J. Am. Chem. Soc. 2012, 134, 10733;
- 6kG. T. Hwang, B. H. Kim, Tetrahedron 2002, 58, 9019;
- 6lP. Lhoták, M. Kawaguchi, A. Ikeda, S. Shinkai, Tetrahedron 1996, 52, 12399–12408;
- 6mP. Timmerman, W. Verboom, F. C. J. M. van Veggel, W. P. van Hoorn, D. N. Reinhoudt, Angew. Chem. Int. Ed. Engl. 1994, 33, 1292; Angew. Chem. 1994, 106, 1313;
- 6nS. Schmidt, W. Bauer, F. W. Heinemann, H. Lanig, A. Grohmann, Angew. Chem. Int. Ed. 2000, 39, 913;
10.1002/(SICI)1521-3773(20000303)39:5<913::AID-ANIE913>3.0.CO;2-Y CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 950;
- 6oG. Gil-Ramírez, S. D. Karlen, A. Shundo, K. Porfyrakis, Y. Ito, A. D. Briggs, J. J. L. Morton, H. L. Anderson, Org. Lett. 2010, 12, 3544.
- 7
- 7aD.-X. Wang, Q.-Y. Zheng, Q.-Q. Wang, M.-X. Wang, Angew. Chem. Int. Ed. 2008, 47, 7485; Angew. Chem. 2008, 120, 7595;
- 7bD.-X. Wang, M.-X. Wang, J. Am. Chem. Soc. 2013, 135, 892;
- 7cD.-X. Wang, Q.-Q. Wang, Y. Han, Y. Wang, Z.-T. Huang, M.-X. Wang, Chem. Eur. J. 2010, 16, 13053.
- 8
- 8aB.-Y. Hou, Q.-Y. Zheng, D.-X. Wang, Z.-T. Huang, M.-X. Wang, Chem. Commun. 2008, 3864;
- 8bY. Chen, D.-X. Wang, Z.-T. Huang, M.-X. Wang, Chem. Commun. 2011, 47, 8112;
- 8cB.-Y. Hou, Q.-Y. Zheng, D.-X. Wang, M.-X. Wang, Tetrahedron 2007, 63, 10801;
- 8dQ. He, Y. Han, Y. Wang, Z.-T. Huang, D.-X. Wang, Chem. Eur. J. 2014, 20, 7486.
- 9J. Blankenstein, J. Zhu, Eur. J. Org. Chem. 2005, 1949.
- 10J. Luo, Y.-F. Ao, C. Malm, J. Hunger, Q.-Q. Wang, D.-X. Wang, Dalton Trans. 2018, 47, 7883.
- 11Q.-Q. Wang, D.-X. Wang, Q.-Y. Zheng, M.-X. Wang, Org. Lett. 2007, 9, 2847.
- 12R.-B. Xu, Q.-Q. Wang, Y.-F. Ao, Z.-Y. Li, Z.-T. Huang, D.-X. Wang, Org. Lett. 2017, 19, 738.