Null Exciton Splitting in Chromophoric Greek Cross (+) Aggregate
Ebin Sebastian
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
These authors contributed equally to this work.
Search for more papers by this authorAbbey M. Philip
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
These authors contributed equally to this work.
Search for more papers by this authorAlfy Benny
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
Search for more papers by this authorCorresponding Author
Dr. Mahesh Hariharan
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
Search for more papers by this authorEbin Sebastian
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
These authors contributed equally to this work.
Search for more papers by this authorAbbey M. Philip
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
These authors contributed equally to this work.
Search for more papers by this authorAlfy Benny
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
Search for more papers by this authorCorresponding Author
Dr. Mahesh Hariharan
School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551 India
Search for more papers by this authorGraphical Abstract
Abstract
Exciton interactions in molecular aggregates play a crucial role in tailoring the optical behaviour of π-conjugated materials. Though vital for optoelectronic applications, ideal Greek cross-dipole (α=90°) stacking of chromophores remains elusive. We report a novel Greek cross (+) assembly of 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2) which exhibits null exciton coupling mediated monomer-like optical characteristics in the crystalline state. In contrast, nonzero exciton coupling in X-type (α=70.2°, PTE-Br0) and J-type (α=0°, θ=48.4°, PTE-Br4) assemblies have perturbed optical properties. Additionally, the semi-classical Marcus theory of charge-transfer rates predicts a selective hole transport phenomenon in the orthogonally stacked PTE-Br2. Precise rotation angle dependent optoelectronic properties in crystalline PTE-Br2 can have consequences in the rational design of novel π-conjugated materials for photonic and molecular electronic applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810209-sup-0001-misc_information.pdf3.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483; Angew. Chem. 2008, 120, 460–492;
- 1bS. K. Park, J. H. Kim, S. Y. Park, Adv. Mater. 2018, 30, 1704759;
- 1cJ. Gierschner, S. Varghese, S. Y. Park, Adv. Opt. Mater. 2016, 4, 347–347.
- 2T. W. Ebbesen, Acc. Chem. Res. 2016, 49, 2403–2412.
- 3
- 3aS. Varghese, S. Das, J. Phys. Chem. Lett. 2011, 2, 863–873;
- 3bK. Sugiyasu, N. Fujita, S. Shinkai, Angew. Chem. Int. Ed. 2004, 43, 1229–1233; Angew. Chem. 2004, 116, 1249–1253;
- 3cR. Sethy, J. Kumar, R. Métivier, M. Louis, K. Nakatani, N. M. T. Mecheri, A. Subhakumari, K. G. Thomas, T. Kawai, T. Nakashima, Angew. Chem. Int. Ed. 2017, 56, 15053–15057; Angew. Chem. 2017, 129, 15249–15253.
- 4
- 4aH. Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang, Y. Wang, Adv. Mater. 2006, 18, 2369–2372;
- 4bA. Ajayaghosh, C. Vijayakumar, R. Varghese, S. J. George, Angew. Chem. Int. Ed. 2006, 45, 456–460; Angew. Chem. 2006, 118, 470–474.
- 5T. Hinoue, Y. Shigenoi, M. Sugino, Y. Mizobe, I. Hisaki, M. Miyata, N. Tohnai, Chem. Eur. J. 2012, 18, 4634–4643.
- 6
- 6aS.-J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M.-G. Choi, D. Kim, S. Y. Park, J. Am. Chem. Soc. 2010, 132, 13675–13683;
- 6bC. Kaufmann, D. Bialas, M. Stolte, F. Würthner, J. Am. Chem. Soc. 2018, 140, 9986–9995;
- 6cA. G. Crawford, Z. Liu, I. A. I. Mkhalid, M.-H. Thibault, N. Schwarz, G. Alcaraz, A. Steffen, J. C. Collings, A. S. Batsanov, J. A. K. Howard, T. B. Marder, Chem. Eur. J. 2012, 18, 5022–5035;
- 6dF. H. Allen, V. J. Hoy, J. A. K. Howard, V. R. Thalladi, G. R. Desiraju, C. C. Wilson, G. J. McIntyre, J. Am. Chem. Soc. 1997, 119, 3477–3480;
- 6eF. D. Lewis, J.-S. Yang, J. Phys. Chem. B 1997, 101, 1775–1781.
- 7S. Park, J. E. Kwon, S.-Y. Park, O.-H. Kwon, J. K. Kim, S.-J. Yoon, J. W. Chung, D. R. Whang, S. K. Park, D. K. Lee, D.-J. Jang, J. Gierschner, S. Y. Park, Adv. Opt. Mater. 2017, 5, 1700353.
- 8
- 8aM. Kasha, H. R. Rawls, M. Ashraf El-Bayoumi, Pure Appl. Chem. 1965, 11, 371–392;
- 8bA. S. Davydov, Usp. Fiz. Nauk 1964, 82, 393–448.
- 9
- 9aN. J. Hestand, F. C. Spano, Chem. Rev. 2018, 118, 7069–7163;
- 9bU. Rösch, S. Yao, R. Wortmann, F. Würthner, Angew. Chem. Int. Ed. 2006, 45, 7026–7030; Angew. Chem. 2006, 118, 7184–7188;
- 9cN. K. Allampally, A. Florian, M. J. Mayoral, C. Rest, V. Stepanenko, G. Fernández, Chem. Eur. J. 2014, 20, 10669–10678.
- 10S.-o. Kim, T. K. An, J. Chen, I. Kang, S. H. Kang, D. S. Chung, C. E. Park, Y.-H. Kim, S.-K. Kwon, Adv. Funct. Mater. 2011, 21, 1616–1623.
- 11
- 11aG. Scheibe, Angew. Chem. 1937, 50, 212–219;
- 11bE. E. Jelley, Nature 1936, 138, 1009–1010;
- 11cF. Würthner, T. E. Kaiser, C. R. Saha-Möller, Angew. Chem. Int. Ed. 2011, 50, 3376–3410; Angew. Chem. 2011, 123, 3436–3473.
- 12Z. Xie, B. Yang, F. Li, G. Cheng, L. Liu, G. Yang, H. Xu, L. Ye, M. Hanif, S. Liu, D. Ma, Y. Ma, J. Am. Chem. Soc. 2005, 127, 14152–14153.
- 13J. Zhou, W. Zhang, X.-F. Jiang, C. Wang, X. Zhou, B. Xu, L. Liu, Z. Xie, Y. Ma, J. Phys. Chem. Lett. 2018, 9, 596–600.
- 14N. J. Hestand, F. C. Spano, J. Chem. Phys. 2015, 143, 244707.
- 15
- 15aS. Ma, J. Zhang, J. Qian, J. Chen, B. Xu, W. Tian, Adv. Opt. Mater. 2015, 3, 763–768;
- 15bX. Feng, V. Marcon, W. Pisula, M. R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, K. Müllen, Nat. Mater. 2009, 8, 421–426;
- 15cS. Sanyal, A. K. Manna, S. K. Pati, J. Phys. Chem. C 2013, 117, 825–836.
- 16J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey, J. L. Brédas, J. Am. Chem. Soc. 1998, 120, 1289–1299.
- 17J.-D. Zhou, W.-Q. Zhang, L.-L. Liu, Z.-Q. Xie, Y.-G. Ma, Chin. Chem. Lett. 2016, 27, 1350–1356.
- 18
- 18aF. He, H. Xu, B. Yang, Y. Duan, L. L. Tian, K. K. Huang, Y. G. Ma, S. Y. Liu, S. H. Feng, J. C. Shen, Adv. Mater. 2005, 17, 2710–2714;
- 18bN. Sanyal, P. M. Lahti, Cryst. Growth Des. 2006, 6, 1253–1255;
- 18cJ. Liu, L. Meng, W. Zhu, C. Zhang, H. Zhang, Y. Yao, Z. Wang, P. He, X. Zhang, Y. Wang, Y. Zhen, H. Dong, Y. Yi, W. Hu, J. Mater. Chem. C 2015, 3, 3068–3071;
- 18dZ. Xie, W. Xie, F. Li, L. Liu, H. Wang, Y. Ma, J. Phys. Chem. C 2008, 112, 9066–9071;
- 18eY. Che, X. Yang, K. Balakrishnan, J. Zuo, L. Zang, Chem. Mater. 2009, 21, 2930–2934;
- 18fB. Zhang, H. Soleimaninejad, D. J. Jones, J. M. White, K. P. Ghiggino, T. A. Smith, W. W. H. Wong, Chem. Mater. 2017, 29, 8395–8403.
- 19M. R. Hansen, T. Schnitzler, W. Pisula, R. Graf, K. Müllen, H. W. Spiess, Angew. Chem. Int. Ed. 2009, 48, 4621–4624; Angew. Chem. 2009, 121, 4691–4695.
- 20X. Feng, W. Pisula, K. Müllen, J. Am. Chem. Soc. 2007, 129, 14116–14117.
- 21V. de Halleux, J. P. Calbert, P. Brocorens, J. Cornil, J. P. Declercq, J. L. Brédas, Y. Geerts, Adv. Funct. Mater. 2004, 14, 649–659.
- 22E. M. Cabaleiro-Lago, J. Rodríguez-Otero, ACS Omega 2018, 3, 9348–9359.
- 23
- 23aR. T. Cheriya, K. Nagarajan, M. Hariharan, J. Phys. Chem. C 2013, 117, 3240–3248;
- 23bS. K. Rajagopal, A. M. Philip, K. Nagarajan, M. Hariharan, Chem. Commun. 2014, 50, 8644–8647;
- 23cK. Nagarajan, G. Gopan, R. T. Cheriya, M. Hariharan, Chem. Commun. 2017, 53, 7409–7411.
- 24
- 24aR. T. Cheriya, A. R. Mallia, M. Hariharan, Energy Environ. Sci. 2014, 7, 1661–1669;
- 24bA. R. Mallia, P. S. Salini, M. Hariharan, J. Am. Chem. Soc. 2015, 137, 15604–15607;
- 24cA. M. Philip, A. R. Mallia, M. Hariharan, J. Phys. Chem. Lett. 2016, 7, 4751–4756.
- 25
- 25aP. Leowanawat, A. Nowak-Król, F. Würthner, Org. Chem. Front. 2016, 3, 537–544;
- 25bS. Sengupta, R. K. Dubey, R. W. M. Hoek, S. P. P. van Eeden, D. D. Gunbaş, F. C. Grozema, E. J. R. Sudhölter, W. F. Jager, J. Org. Chem. 2014, 79, 6655–6662.
- 26K. Nagarajan, A. R. Mallia, V. S. Reddy, M. Hariharan, J. Phys. Chem. C 2016, 120, 8443–8450.
- 27R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1994.
- 28M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19–32.
- 29
- 29aB. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887–1930;
- 29bV. Bhat, G. Gopan, N. G. Nair, M. Hariharan, Chem. Eur. J. 2018, 24, 8679–8685.
- 30L. Loots, L. J. Barbour, CrystEngComm 2012, 14, 300–304.
- 31L. Yang, J. B. Brazier, T. A. Hubbard, D. M. Rogers, S. L. Cockroft, Angew. Chem. Int. Ed. 2016, 55, 912–916; Angew. Chem. 2016, 128, 924–928.
- 32M. Son, K. H. Park, C. Shao, F. Würthner, D. Kim, J. Phys. Chem. Lett. 2014, 5, 3601–3607.
- 33Marginal variation among the steady-state absorption/emission in PTE-Br2 solution (chloroform) and crystalline state can be a consequence of the van der Waals stabilisation (ΔϵvdW) achieved in the crystalline state.
- 34
- 34aJ. V. Morris, M. A. Mahaney, J. R. Huber, J. Phys. Chem. 1976, 80, 969–974;
- 34bT. S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, C. J. Bardeen, Rev. Sci. Instrum. 2007, 78, 086105.
- 35W.-Q. Deng, W. A. Goddard, J. Phys. Chem. B 2004, 108, 8614–8621.
- 36D. Wang, M. V. Ivanov, D. Kokkin, J. Loman, J.-Z. Cai, S. A. Reid, R. Rathore, Angew. Chem. Int. Ed. 2018, 57, 8189–8193; Angew. Chem. 2018, 130, 8321–8325.
- 37Variation in the rotational-angle-dependent transport property in crystalline PTE-Br4 is due to the large longitudinal and transverse slips in the slip-stacked molecular assembly. For comparing with PTE-Br2, molecular centroids of the two molecules of PTE-Br4 were collimated via nullifying the longitudinal and the transverse slips (see Table S10, Figure S21).
- 38H. Yamagata, D. S. Maxwell, J. Fan, K. R. Kittilstved, A. L. Briseno, M. D. Barnes, F. C. Spano, J. Phys. Chem. C 2014, 118, 28842–28854.
- 39Though the charge-filtering effect has been observed at a near-orthogonal geometry in PTE-Br0,2,4, the phenomenon could not be generalized to other chromophoric systems as the relative geometries of the HOMO and LUMO orbitals could potentially perturb the electronic coupling and charge-transport characteristics.