An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling
Zhifang Sun
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 Japan
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Yoshihiro Yamauchi
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Fumito Araoka
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Youn Soo Kim
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Julian Bergueiro
Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Dr. Yasuhiro Ishida
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Yasuo Ebina
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorProf. Dr. Takayoshi Sasaki
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorDr. Takaaki Hikima
RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5198 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Takuzo Aida
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 Japan
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorZhifang Sun
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 Japan
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Yoshihiro Yamauchi
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Fumito Araoka
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Youn Soo Kim
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Julian Bergueiro
Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Dr. Yasuhiro Ishida
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Yasuo Ebina
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorProf. Dr. Takayoshi Sasaki
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorDr. Takaaki Hikima
RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5198 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Takuzo Aida
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 Japan
RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorGraphical Abstract
Soft robot: An unprecedented photoresponsive hydrogel actuator enables earthworm-like peristaltic crawling and reverses its direction by scanning with a laser spotlight. This anomalous optical control was made possible by a rapid, large, repeatable, spatiotemporal, and anisotropic photothermal deformation of a hydrogel that contains gold nanoparticles in titanate nanosheets.
Abstract
Peristaltic crawling, which is the moving mechanism of earthworm-like limbless creatures in narrow spaces, is a challenging target to mimic by using soft materials. Here we report an unprecedented hydrogel actuator that enables not only a peristaltic crawling motion but also reversing its direction. Our cylindrically processed hydrogel contains gold nanoparticles for photothermal conversion, a thermoresponsive polymer network for switching the electrical permittivity of the gel interior, and cofacially oriented 2D electrolytes (titanate nanosheets; TiNSs) to synchronously change their anisotropic electrostatic repulsion. When a hydrogel, which was designed to include cofacially oriented TiNSs along the cylindrical gel axis, is pointwisely photoirradiated with a visible-light laser, it spatiotemporally expands immediately (<0.5 s) and largely (80 % of its original length) in an isovolumetric manner. When the irradiation spot is moved along the cylindrical gel axis, the hydrogel undergoes peristaltic crawling due to quick and sequential elongation/contraction events and moves oppositely toward the laser scanning direction. Thus, when the scanning direction is switched, the crawling direction is reversed. When gold nanorods are used in place of gold nanoparticles, the hydrogel becomes responsive to a near-infrared light, which can deeply penetrate into bio tissues.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810052-sup-0001-misc_information.pdf5.6 MB | Supplementary |
anie201810052-sup-0001-Video_S1.mp43.4 MB | Supplementary |
anie201810052-sup-0001-Video_S2.mp42.2 MB | Supplementary |
anie201810052-sup-0001-Video_S3.mp44.8 MB | Supplementary |
anie201810052-sup-0001-Video_S4.mp41.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. J. Quillin, J. Exp. Biol. 1999, 202, 661–674;
- 1bY. Tanaka, K. Ito, T. Nakagaki, R. Kobayashi, J. R. Soc. Interface 2012, 9, 222–233.
- 2
- 2aA. Menciassi, D. Accoto, S. Gorini, P. Dario, Autonomous Robots 2006, 21, 155–163;
- 2bS. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, S. Kim, IEEE/ASME Trans. Mechatronics 2013, 18, 1485–1497;
- 2cT. Kano, R. Kobayashi, A. Ishiguro, Adv. Robotics 2014, 28, 197–202.
- 3
- 3aN. Saga, T. Nakamura, Smart Mater. Struct. 2004, 13, 566–569;
- 3bS. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga, P. Fischer, Nat. Mater. 2016, 15, 647–653.
- 4
- 4aL. Ionov, Mater. Today 2014, 17, 494–503;
- 4bD. T. Eddington, D. J. Beebe, Adv. Drug Delivery Rev. 2004, 56, 199–210;
- 4cS. Chaterji, I. K. Kwon, K. Park, Prog. Polym. Sci. 2007, 32, 1083–1122.
- 5
- 5aZ. Liu, P. Calvert, Adv. Mater. 2000, 12, 288–291;
- 5bD. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B. H. Jo, Nature 2000, 404, 588–590;
- 5cR. Yoshida, Adv. Mater. 2010, 22, 3463–3483;
- 5dH. Thérien-Aubin, Z. L. Wu, Z. Nie, E. Kumacheva, J. Am. Chem. Soc. 2013, 135, 4834–4839;
- 5eH. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, X. Zhao, Nat. Commun. 2017, 8, 14230.
- 6
- 6aX. Zeng, H. Jiang, Appl. Phys. Lett. 2008, 93, 151101;
- 6bC.-W. Lo, D. Zhu, H. Jiang, Soft Matter 2011, 7, 5604–5609;
- 6cE. Wang, M. S. Desai, S.-W. Lee, Nano Lett. 2013, 13, 2826–2830.
- 7
- 7aY.-L. Zhao, J. F. Stoddart, Langmuir 2009, 25, 8442–8446;
- 7bY. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270;
- 7cK. Iwaso, Y. Takashima, A. Harada, Nat. Chem. 2016, 8, 625.
- 8
- 8aZ. B. Hu, X. M. Zhang, Y. Li, Science 1995, 269, 525–527;
- 8bR. M. Erb, J. S. Sander, R. Grisch, A. R. Studart, Nat. Commun. 2013, 4, 1712;
- 8cZ. L. Wu, M. Moshe, J. Greener, H. Therien-Aubin, Z. Nie, E. Sharon, E. Kumacheva, Nat. Commun. 2013, 4, 1586;
- 8dA. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413–418.
- 9
- 9aM. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima, M. Takata, T. Aida, Nature 2015, 517, 68–72;
- 9bY. S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. Aida, Nat. Mater. 2015, 14, 1002–1007;
- 9cK. Sano, Y. S. Kim, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima, T. Aida, Nat. Commun. 2016, 7, 12559;
- 9dK. Sano, Y. Ishida, T. Aida, Angew. Chem. Int. Ed. 2018, 57, 2532–2543; Angew. Chem. 2018, 130, 2558–2570.
- 10
- 10aH. G. Schild, Prog. Polym. Sci. 1992, 17, 163–249;
- 10bM. Shibayama, T. Tanaka, Adv. Polym. Sci. 1993, 109, 1–62;
- 10cR. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature 1995, 374, 240–242;
- 10dR. Pelton, Adv. Colloid Interface Sci. 2000, 85, 1–33;
- 10eM. Füllbrandt, E. Ermilova, A. Asadujjaman, R. Hölzel, F. F. Bier, R. von Klitzing, A. Schönhals, J. Phys. Chem. B 2014, 118, 3750–3759.
- 11
- 11aG. Frens, Nature 1973, 241, 20–22;
- 11bC. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025–1102;
- 11cK. Yue, J. Nan, X. Zhang, J. Tang, X. Zhang, Appl. Therm. Eng. 2016, 99, 1093–1100;
- 11dZ. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W. C. W. Chan, W. Lipiński, J. C. Bischof, Sci. Rep. 2016, 6, 29836.
- 12
- 12aE. J. W. Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier: Amsterdam, 1948;
- 12bA. Anandarajah, L. Ning, Int. J. Numer. Anal. Methods 1991, 15, 683–703;
- 12cN. Miyamoto, T. Nakato, Isr. J. Chem. 2012, 52, 881–894.
- 13
- 13aB. Mei, A. Pougin, J. Strunk, J. Catal. 2013, 306, 184–189;
- 13bA. Tanaka, K. Fuku, T. Nishi, K. Hashimoto, H. Kominami, J. Phys. Chem. C 2013, 117, 16983–16989.
- 14
- 14aG. Strangman, D. A. Boas, J. P. Sutton, Biol. Psychiatry 2002, 52, 679–693;
- 14bC. Wang, H. Tao, L. Cheng, Z. Liu, Biomaterials 2011, 32, 6145–6154;
- 14cK. Welsher, S. P. Sherlock, H. Dai, Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.
- 15
- 15aX. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115–2120;
- 15bM. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, Nat. Mater. 2009, 8, 935–939;
- 15cH. Kang, A. C. Trondoli, G. Zhu, Y. Chen, Y.-J. Chang, H. Liu, Y.-F. Huang, X. Zhang, W. Tan, ACS Nano 2011, 5, 5094–5099;
- 15dB. Yan, J.-C. Boyer, D. Habault, N. R. Branda, Y. Zhao, J. Am. Chem. Soc. 2012, 134, 16558–16561.