All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects
Dr. Gang Wang
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Dr. Ferdinand S. Melkonyan
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Prof. Antonio Facchetti
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077 USA
Search for more papers by this authorCorresponding Author
Prof. Tobin J. Marks
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDr. Gang Wang
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Dr. Ferdinand S. Melkonyan
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Prof. Antonio Facchetti
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077 USA
Search for more papers by this authorCorresponding Author
Prof. Tobin J. Marks
Department of Chemistry, the Materials Research Center, the Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorGraphical Abstract
APSCs offer all: All-polymer solar cells have attracted great attention, owing to rational design, improved morphology, strong absorption, enhanced stability etc. This Minireview highlights the opportunities of APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.
Abstract
For over two decades bulk-heterojunction polymer solar cell (BHJ-PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non-fullerene PSCs developing very rapidly. The power conversion efficiencies of non-fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene-based PSCs. Among the various non-fullerene PSCs, all-polymer solar cells (APSCs) based on polymer donor-polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long-term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aX. Guo, N. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. P. Ortiz, J. T. L. Navarrete, S. Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Nat. Photonics 2013, 7, 825–833;
- 1bD. M. Stoltzfus, J. E. Donaghey, A. Armin, P. E. Shaw, P. L. Burn, P. Meredith, Chem. Rev. 2016, 116, 12920–12955;
- 1cA. Kuzmich, D. Padula, H. Ma, A. Troisi, Energy Environ. Sci. 2017, 10, 395–401.
- 2G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789–1791.
- 3
- 3aF. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Adv. Mater. 2017, 29, 1700144;
- 3bX. Che, Y. Li, Y. Qu, S. R. Forrest, Nat. Energy 2018, 3, 422–427.
- 4J. Jiang, B. Bao, M. Li, J. Sun, C. Zhang, Y. Li, F. Li, X. Yao, Y. Song, Adv. Mater. 2016, 28, 1420–1426.
- 5
- 5aC. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003;
- 5bP. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131–142;
- 5cY. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170–1174.
- 6X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728–3743.
- 7H. Kang, W. Lee, J. Oh, T. Kim, C. Lee, B. J. Kim, Acc. Chem. Res. 2016, 49, 2424–2434.
- 8J. Zhang, H. S. Tan, X. Guo, A. Facchetti, H. Yan, Nat. Energy 2018, 3, 720–731.
- 9
- 9aA. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, aad 4424;
- 9bH. Benten, T. Nishida, D. Mori, H. Xu, H. Ohkita, S. Ito, Energy Environ. Sci. 2016, 9, 135–140;
- 9cE. F. Manley, J. Strzalka, T. J. Fauvell, T. J. Marks, L. X. Chen, Adv. Energy Mater. 2018, 8, 1800611.
- 10S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nat. Commun. 2016, 7, 11585.
- 11K. D. Deshmukh, T. Qin, J. K. Gallaher, A. C. Y. Liu, E. Gann, K. O'Donnell, L. Thomsen, J. M. Hodgkiss, S. E. Watkins, C. R. McNeill, Energy Environ. Sci. 2015, 8, 332–342.
- 12Z. Li, X. Xu, W. Zhang, X. Meng, Z. Genene, W. Ma, W. Mammo, A. Yartsev, M. R. Andersson, R. A. J. Janssen, E. Wang, Energy Environ. Sci. 2017, 10, 2212–2221.
- 13N. Zhou, A. Facchetti, Mater. Today 2018, 21, 377–390.
- 14C. Lee, Y. Li, W. Lee, Y. Lee, J. Choi, T. Kim, C. Wang, E. D. Gomez, H. Y. Woo, B. J. Kim, Macromolecules 2016, 49, 5051–5058.
- 15
- 15aY. Guo, Y. Li, O. Awartani, H. Han, J. Zhao, H. Ade, H. Yan, D. Zhao, Adv. Mater. 2017, 29, 1700309;
- 15bZ.-G. Zhang, Y. Yang, J. Yao, L. Xue, S. Chen, X. Li, W. Morrison, C. Yang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 13503–13507; Angew. Chem. 2017, 129, 13688–13692.
- 16A. Facchetti, Mater. Today 2013, 16, 123–132.
- 17
- 17aJ. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498;
- 17bG. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510–4515.
- 18
- 18aJ. R. Moore, S. Albert, A. Rao, S. Massip, B. Watts, D. J. Morgan, R. H. Friend, R. M. Christopher, H. Sirringhaus, Adv. Energy Mater. 2011, 1, 230–240;
- 18bS. Fabiano, Z. Chen, S. Vahedi, A. Facchetti, B. Pignataro, M. A. Loi, J. Mater. Chem. 2011, 21, 5891–5896.
- 19S. Fabiano, S. Himmelberger, M. Drees, Z. Chen, R. M. Altamimi, A. Salleo, M. A. Loi, A. Facchetti, Adv. Energy Mater. 2014, 4, 1301409.
- 20Y. Tang, R. M. Christopher, J. Polym. Sci. Part B 2013, 51, 403–409.
- 21N. J. Zhou, H. Lin, S. J. Lou, X. G. Yu, P. J. Guo, E. F. Manley, S. Loser, P. Hartnett, H. Huang, M. R. Wasielewski, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Adv. Energy Mater. 2014, 4, 1300785.
- 22D. Mori, H. Benten, I. Okada, H. Ohkita, S. Ito, Adv. Energy Mater. 2014, 4, 1301006.
- 23C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, F. Huang, A. Facchetti, H. Ade, H. Yan, Adv. Mater. 2014, 26, 7224–7230.
- 24D. Mori, H. Benten, I. Okada, H. Ohkita, S. Ito, Energy Environ. Sci. 2014, 7, 2939–2943.
- 25J. Yuan, M. J. Ford, Y. Xu, Y. Zhang, G. C. Bazan, W. Ma, Adv. Energy Mater. 2018, 8, 1703291.
- 26Z. Li, W. Zhang, X. Xu, Z. Genene, D. Di Carlo Rasi, W. Mammo, A. Yartsev, M. R. Andersson, R. A. J. Janssen, E. Wang, Adv. Energy Mater. 2017, 7, 1602722.
- 27S. W. Kim, J. Choi, T. T. T. Bui, C. Lee, C. Cho, K. Na, J. Jung, C. E. Song, B. Ma, J.-Y. Lee, W. S. Shin, B. J. Kim, Adv. Funct. Mater. 2017, 27, 1703070.
- 28
- 28aW. Lee, C. Lee, H. Yu, D.-J. Kim, C. Wang, H. Y. Woo, J. H. Oh, B. J. Kim, Adv. Funct. Mater. 2016, 26, 1543–1553;
- 28bB. Fan, L. Ying, P. Zhu, F. Pan, F. Liu, J. Chen, F. Huang, Y. Cao, Adv. Mater. 2017, 29, 1703906.
- 29
- 29aR. Stalder, S. R. Puniredd, M. R. Hansen, U. Koldemir, C. Grand, W. Zajaczkowski, K. Müllen, W. Pisula, J. R. Reynolds, Chem. Mater. 2016, 28, 1286–1297;
- 29bJ. Huang, J. H. Carpenter, C.-Z. Li, J.-S. Yu, H. Ade, A. K. Y. Jen, Adv. Mater. 2016, 28, 967–974;
- 29cN. D. Eastham, A. S. Dudnik, T. J. Aldrich, E. F. Manley, T. J. Fauvell, P. E. Hartnett, M. R. Wasielewski, L. X. Chen, F. S. Melkonyan, A. Facchetti, R. P. H. Chang, T. J. Marks, Chem. Mater. 2017, 29, 4432–4444;
- 29dY. Fu, B. Wang, J. Qu, Y. Wu, W. Ma, Y. Geng, Y. Han, Z. Xie, Adv. Funct. Mater. 2016, 26, 5922–5929;
- 29eJ. Jung, W. Lee, C. Lee, H. Ahn, B. J. Kim, Adv. Energy Mater. 2016, 6, 1600504;
- 29fW. Li, L. Yang, J. R. Tumbleston, L. Yan, H. Ade, W. You, Adv. Mater. 2014, 26, 4456–4462;
- 29gY. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 2014, 5, 5293.
- 30
- 30aJ. Lee, R. Singh, D. H. Sin, H. G. Kim, K. C. Song, K. Cho, Adv. Mater. 2016, 28, 69–76;
- 30bT. J. Fauvell, T. Zheng, N. E. Jackson, M. A. Ratner, L. Yu, L. X. Chen, Chem. Mater. 2016, 28, 2814–2822.
- 31
- 31aH. Kang, M. A. Uddin, C. Lee, K. H. Kim, T. L. Nguyen, W. Lee, Y. Li, C. Wang, H. Y. Woo, B. J. Kim, J. Am. Chem. Soc. 2015, 137, 2359–2365;
- 31bB. Fan, L. Ying, Z. Wang, B. He, X. Jiang, F. Huang, Y. Cao, Energy Environ. Sci. 2017, 10, 1243–1251.
- 32N. J. Zhou, A. S. Dudnik, T. I. N. G. Li, E. F. Manley, T. J. Aldrich, P. J. Guo, H. C. Liao, Z. H. Chen, L. X. Chen, R. P. H. Chang, A. Facchetti, M. O. de la Cruz, T. J. Marks, J. Am. Chem. Soc. 2016, 138, 1240–1251.
- 33G. Wang, N. D. Eastham, T. J. Aldrich, B. Ma, E. F. Manley, Z. Chen, L. X. Chen, M. O. de la Cruz, R. P. H. Chang, F. S. Melkonyan, A. Facchetti, T. J. Marks, Adv. Energy Mater. 2018, 8, 1702173.
- 34
- 34aA. Timalsina, P. E. Hartnett, F. S. Melkonyan, J. Strzalka, V. S. Reddy, A. Facchetti, M. R. Wasielewski, T. J. Marks, J. Mater. Chem. A 2017, 5, 5351–5361;
- 34bW. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148–7151.
- 35J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 2016, 1, 15027.
- 36L. Ye, Y. Xiong, S. Li, M. Ghasemi, N. Balar, J. Turner, A. Gadisa, J. Hou, B. T. O'Connor, H. Ade, Adv. Funct. Mater. 2017, 27, 1702016.
- 37S. Li, H. Zhang, W. Zhao, L. Ye, H. Yao, B. Yang, S. Zhang, J. Hou, Adv. Energy Mater. 2016, 6, 1501991.
- 38Z. J. Li, X. F. Xu, W. Zhang, X. Y. Meng, W. Ma, A. Yartsev, O. Inganas, M. R. Andersson, R. A. J. Janssen, E. G. Wang, J. Am. Chem. Soc. 2016, 138, 10935–10944.
- 39L. Ye, X. C. Jiao, W. C. Zhao, S. Q. Zhang, H. F. Yao, S. S. Li, H. Ade, J. H. Hou, Chem. Mater. 2016, 28, 6178–6185.
- 40H. I. Kim, M. Kim, C. W. Park, H. U. Kim, H.-K. Lee, T. Park, Chem. Mater. 2017, 29, 6793–6798.
- 41P. Cheng, C. Yan, Y. Li, W. Ma, X. Zhan, Energy Environ. Sci. 2015, 8, 2357–2364.
- 42
- 42aG. Wang, W. Huang, N. D. Eastham, S. Fabiano, E. F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R. P. H. Chang, L. X. Chen, M. J. Bedzyk, F. S. Melkonyan, A. Facchetti, T. J. Marks, Proc. Natl. Acad. Sci. USA 2017, 114, E 10066–E10073;
- 42bX. Gu, L. Shaw, K. Gu, M. F. Toney, Z. Bao, Nat. Commun. 2018, 9, 534;
- 42cY. Diao, Y. Zhou, T. Kurosawa, L. Shaw, C. Wang, S. Park, Y. K. Guo, J. A. Reinspach, K. Gu, X. D. Gu, B. C. K. Tee, C. H. Pang, H. P. Yan, D. H. Zhao, M. F. Toney, S. C. B. Mannsfeld, Z. A. Bao, Nat. Commun. 2015, 6, 7955.
- 43G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447–3507.
- 44Y. Zhang, Y. Xu, M. J. Ford, F. Li, J. Sun, X. Ling, Y. Wang, J. Gu, J. Yuan, W. Ma, Adv. Energy Mater. 2018, 8, 1800029.
- 45W. Kim, J. Choi, J.-H. Kim, T. Kim, C. Lee, S. Lee, M. Kim, B. J. Kim, T.-S. Kim, Chem. Mater. 2018, 30, 2102–2111.
- 46G. Dennler, M. C. Scharber, B. J. Christoph, Adv. Mater. 2009, 21, 1323–1338.
- 47C. R. McNeill, Energy Environ. Sci. 2012, 5, 5653–5667.
- 48M. Schubert, B. A. Collins, H. Mangold, I. A. Howard, W. Schindler, K. Vandewal, S. Roland, J. Behrends, F. Kraffert, R. Steyrleuthner, Z. Chen, K. Fostiropoulos, R. Bittl, A. Salleo, A. Facchetti, F. Laquai, H. W. Ade, D. Neher, Adv. Funct. Mater. 2014, 24, 4068–4081.
- 49
- 49aA. S. Dudnik, T. J. Aldrich, N. D. Eastham, R. P. H. Chang, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2016, 138, 15699–15709;
- 49bA. Facchetti, L. Vaccaro, A. Marrocchi, Angew. Chem. Int. Ed. 2012, 51, 3520–3523; Angew. Chem. 2012, 124, 3578–3581.
- 50E. F. Manley, J. Strzalka, T. J. Fauvell, N. E. Jackson, M. J. Leonardi, N. D. Eastham, T. J. Marks, L. X. Chen, Adv. Mater. 2017, 29, 1703933.