Embedding 1D Conducting Channels into 3D Isoporous Polymer Films for High-Performance Humidity Sensing
Rahul Shevate
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorMd Azimul Haque
Materials Science and Engineering, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorFaheem Hassan Akhtar
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorLuis Francisco Villalobos
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Tom Wu
Materials Science and Engineering, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Present address: School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Klaus-Viktor Peinemann
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorRahul Shevate
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorMd Azimul Haque
Materials Science and Engineering, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorFaheem Hassan Akhtar
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorLuis Francisco Villalobos
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Tom Wu
Materials Science and Engineering, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Present address: School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Klaus-Viktor Peinemann
Advanced Membranes and Porous Materials Center, King Abdullah Institute of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
Search for more papers by this authorGraphical Abstract
Abstract
Isoporous block copolymer (BCP) films have received exponential interest as highly selective membranes, stemming from their unique morphological features, but their applications in functional devices remain to be realized. Now single-walled carbon nanotubes (CNTs) were efficiently incorporated into isoporous block copolymer films for chemiresistive sensing at room temperature. Leveraging the efficient charge extraction ability of CNTs together with nanochannel arrays aligned perpendicular to the surface of the films, an ultrafast response time of 0.3 s was achieved for humidity detection with a sensor response of about 800 on changing humidity from 10 % to 95 %. Furthermore, the sensor also responds to various organic vapors, underscoring its promising detection capability.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201804656-sup-0001-misc_information.pdf3.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, Y. Wei, J. Am. Chem. Soc. 2008, 130, 5036–5037;
- 1bM. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101–113;
- 1cA. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 2003, 15, 997–1000;
- 1dY. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 293, 1289;
- 1eY. Zilberman, R. Ionescu, X. Feng, K. Müllen, H. Haick, ACS Nano 2011, 5, 6743–6753.
- 2
- 2aS. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, ACS Nano 2013, 7, 11166–11173;
- 2bQ. Kuang, C. Lao, Z. L. Wang, Z. Xie, L. Zheng, J. Am. Chem. Soc. 2007, 129, 6070–6071;
- 2cS. Mintova, S. Mo, T. Bein, Chem. Mater. 2001, 13, 901–905;
- 2dW. Luo, T. Zhao, Y. Li, J. Wei, P. Xu, X. Li, Y. Wang, W. Zhang, A. A. Elzatahry, A. Alghamdi, Y. Deng, L. Wang, W. Jiang, Y. Liu, B. Kong, D. Zhao, J. Am. Chem. Soc. 2016, 138, 12586–12595.
- 3T. Li, L. Li, H. Sun, Y. Xu, X. Wang, H. Luo, Z. Liu, T. Zhang, Adv. Sci. 2017, 4, 1600404.
- 4E. Kim, S. Y. Kim, G. Jo, S. Kim, M. J. Park, ACS Appl. Mater. Interfaces 2012, 4, 5179–5187.
- 5S. Virji, J. Huang, R. B. Kaner, B. H. Weiller, Nano Lett. 2004, 4, 491–496.
- 6S. Jung, J. H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.-H. Kim, Adv. Mater. 2014, 26, 4825–4830.
- 7K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992–996.
- 8
- 8aH. Yu, X. Qiu, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2014, 53, 10072–10076; Angew. Chem. 2014, 126, 10236–10240;
- 8bH. Yu, X. Qiu, N. Moreno, Z. Ma, V. M. Calo, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2015, 54, 13937–13941; Angew. Chem. 2015, 127, 14143–14147;
- 8cW. A. Phillip, R. M. Dorin, J. Werner, E. M. V. Hoek, U. Wiesner, M. Elimelech, Nano Lett. 2011, 11, 2892–2900;
- 8dR. Shevate, M. Kumar, M. Karunakaran, C. Canlas, K.-V. Peinemann, J. Mater. Chem. A 2018, 6, 4337–4345.
- 9
- 9aT. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, T. Someya, Proc. Natl. Acad. Sci. USA 2015, 112, 14533;
- 9bK. Paek, H. Yang, J. Lee, J. Park, B. J. Kim, ACS Nano 2014, 8, 2848–2856;
- 9cB. J. Doleman, R. D. Sanner, E. J. Severin, R. H. Grubbs, N. S. Lewis, Anal. Chem. 1998, 70, 2560–2564;
- 9dT. Gao, E. S. Tillman, N. S. Lewis, Chem. Mater. 2005, 17, 2904–2911.
- 10
- 10aR. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787;
- 10bY. Huang, P. Chen, Adv. Mater. 2010, 22, 2818–2823;
- 10cC. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829–841;
- 10dM. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam, Nat. Nanotechnol. 2006, 1, 60;
- 10eM. C. Hersam, Nat. Nanotechnol. 2008, 3, 387.
- 11C. Wei, L. Dai, A. Roy, T. B. Tolle, J. Am. Chem. Soc. 2006, 128, 1412–1413.
- 12B. Yoon, S. F. Liu, T. M. Swager, Chem. Mater. 2016, 28, 5916–5924.
- 13D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J. Am. Chem. Soc. 2003, 125, 3370–3375.
- 14M. J. O′Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 2002, 297, 593.
- 15V. K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Nanoscale 2016, 8, 19794–19803.
- 16X. Li, D. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z. Sun, J. Ji, Y. Shen, H. Sun, H. Zeng, ACS Nano 2017, 11, 2015–2023.
- 17
- 17aJ. Bai, B. Zhou, Chem. Rev. 2014, 114, 10131–10176;
- 17bA. I. Buvailo, Y. Xing, J. Hines, N. Dollahon, E. Borguet, ACS Appl. Mater. Interfaces 2011, 3, 528–533.
- 18B. K. Mutuma, R. Rodrigues, K. Ranganathan, B. Matsoso, D. Wamwangi, I. A. Hummelgen, N. J. Coville, J. Mater. Chem. A 2017, 5, 2539–2549.
- 19K. Zhang, J. Zou, Q. Zhang, Nanotechnology 2015, 26, 455501.
- 20J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622–625.
- 21
- 21aJ.-W. Han, B. Kim, J. Li, M. Meyyappan, RSC Adv. 2014, 4, 549–553;
- 21bP. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, Nano Lett. 2003, 3, 347–351.