Ultrathin Chiral Metal–Organic-Framework Nanosheets for Efficient Enantioselective Separation
Jun Guo
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Center for Nanochemistry, Peking University, Beijing, 100871 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYin Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Center for Nanochemistry, Peking University, Beijing, 100871 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYanfei Zhu
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChang Long
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorDr. Meiting Zhao
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorProf. Meng He
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiaofei Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorJiawei Lv
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorProf. Bing Han
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Zhiyong Tang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorJun Guo
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Center for Nanochemistry, Peking University, Beijing, 100871 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYin Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Center for Nanochemistry, Peking University, Beijing, 100871 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYanfei Zhu
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChang Long
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorDr. Meiting Zhao
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorProf. Meng He
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiaofei Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorJiawei Lv
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorProf. Bing Han
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Zhiyong Tang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorGraphical Abstract
Think thin: Ultrathin chiral metal–organic framework (CMOF) nanosheets of only few layers in thickness are prepared for the first time by a biomimetic strategy. Benefiting from the much larger number of exposed chiral sites, ultrathin CMOF nanosheets exhibit far superior enantioselectivity in chiral separation than their bulk counterparts.
Abstract
Chiral metal–organic framework (CMOF) nanosheets only a few layers thick remain a virgin land waiting for exploration. Herein, the first examples of ultrathin CMOF nanosheets are prepared by the confinement growth of two-dimensional (2D) chiral layers, which are assembled by helical metal–organic chains within microemulsion. This convenient and easily scaled up inverse microemulsion method gives a series of 2D CMOF nanosheets composed of variable metal nodes or chiral ligands. More significantly, thanks to the exceptionally large number of chiral sites exposed on surfaces, the as-obtained CMOF nanosheets exhibit much higher enantioselectivity in chiral separation compared with their bulk counterparts.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201803125-sup-0001-misc_information.pdf2.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Cao, Z. Lin, W. Shi, Z. Wang, C. Zhang, X. Hu, C. Wang, W. Lin, J. Am. Chem. Soc. 2017, 139, 7020–7029.
- 2
- 2aM. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang, J. Ping, Z. Zhang, Q. Lu, Y. Yu, H. Xu, Y. Zhao, H. Zhang, Adv. Mater. 2015, 27, 7372–7378;
- 2bZ.-Q. Li, L.-G. Qiu, W. Wang, T. Xu, Y. Wu, X. Jiang, Inorg. Chem. Commun. 2008, 11, 1375–1377.
- 3
- 3aW. Shi, L. Cao, H. Zhang, X. Zhou, B. An, Z. Lin, R. Dai, J. Li, C. Wang, W. Lin, Angew. Chem. Int. Ed. 2017, 56, 9704–9709; Angew. Chem. 2017, 129, 9836–9841;
- 3bL. Cao, Z. Lin, F. Peng, W. Wang, R. Huang, C. Wang, J. Yan, J. Liang, Z. Zhang, T. Zhang, L. Long, J. Sun, W. Lin, Angew. Chem. Int. Ed. 2016, 55, 4962–4966; Angew. Chem. 2016, 128, 5046–5050;
- 3cM. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 2009, 461, 246–249;
- 3dA. J. Clough, J. W. Yoo, M. H. Mecklenburg, S. C. Marinescu, J. Am. Chem. Soc. 2015, 137, 118–121;
- 3eS. L. Zhao, Y. Wang, J. C. Dong, C. T. He, H. J. Yin, P. F. An, K. Zhao, X. F. Zhang, C. Gao, L. J. Zhang, J. W. Lv, J. X. Wang, J. Q. Zhang, A. M. Khattak, N. A. Khan, Z. X. Wei, J. Zhang, S. Q. Liu, H. J. Zhao, Z. Y. Tang, Nat. Energy 2016, 1, 16184;
- 3fP.-Z. Li, X.-J. Wang, J. Liu, J. S. Lim, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2016, 138, 2142–2145.
- 4
- 4aY. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356–1359;
- 4bT. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, J. Gascon, Nat. Mater. 2014, 14, 48–55;
- 4cX. Wang, C. Chi, K. Zhang, Y. Qian, K. M. Gupta, Z. Kang, J. Jiang, D. Zhao, Nat. Commun. 2017, 8, 14460.
- 5
- 5aR. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, H. Kitagawa, Nat. Mater. 2010, 9, 565–571;
- 5bS. Motoyama, R. Makiura, O. Sakata, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 5640–5643.
- 6S. Mitra, S. Kandambeth, B. P. Biswal, A. Khayum M, C. K. Choudhury, M. Mehta, G. Kaur, S. Banerjee, A. Prabhune, S. Verma, S. Roy, U. K. Kharul, R. Banerjee, J. Am. Chem. Soc. 2016, 138, 2823–2828.
- 7
- 7aM. M. Wanderley, C. Wang, C.-D. Wu, W. Lin, J. Am. Chem. Soc. 2012, 134, 9050–9053;
- 7bL. Q. Ma, J. M. Falkowski, C. Abney, W. B. Lin, Nat. Chem. 2010, 2, 838–846;
- 7cY. Peng, T. Gong, K. Zhang, X. Lin, Y. Liu, J. Jiang, Y. Cui, Nat. Commun. 2014, 5, 4406;
- 7dR.-G. Xiong, X.-Z. You, B. F. Abrahams, Z. Xue, C.-M. Che, Angew. Chem. Int. Ed. 2001, 40, 4422–4425;
10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4554–4557;
- 7eY. Zhang, J. Guo, L. Shi, Y. Zhu, K. Hou, Y. Zheng, Z. Tang, Sci. Adv. 2017, 3, e 1701162;
- 7fJ. Liang, Z. Liang, R. Zou, Y. Zhao, Adv. Mater. 2017, 29, 1701139.
- 8
- 8aS. Zhang, Nat. Biotechnol. 2003, 21, 1171–1178;
- 8bS. Keten, Z. Xu, B. Ihle, M. J. Buehler, Nat. Mater. 2010, 9, 359–367.
- 9CCDC 1589921 and 1589922 (l-Thr-Zn, d-Thr-Zn) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 10D. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa, S. Kitagawa, J. Groll, Nat. Chem. 2010, 2, 410–416.
- 11
- 11aG. L. J. A. Rikken, E. Raupach, Nature 2000, 405, 932–935;
- 11bC. Train, R. Gheorghe, V. Krstic, L.-M. Chamoreau, N. S. Ovanesyan, G. L. J. A. Rikken, M. Gruselle, M. Verdaguer, Nat. Mater. 2008, 7, 729–734.
- 12J. W. Vaughn, V. E. Magnuson, G. J. Seiler, Inorg. Chem. 1969, 8, 1201–1202.
- 13G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 1998, 41, 207–219.
- 14J. Z. Yan, H. F. Su, H. Y. Yang, C. Y. Hu, S. Malola, S. C. Lin, B. K. Teo, H. Hakkinen, N. F. Zheng, J. Am. Chem. Soc. 2016, 138, 12751–12754.