Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges
Prof. Zhenyu Sun
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorDr. Neetu Talreja
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorHengcong Tao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. John Texter
School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI, 48197 USA
Search for more papers by this authorCorresponding Author
Prof. Martin Muhler
Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, 44780 Bochum, Germany
Search for more papers by this authorProf. Jennifer Strunk
Leibniz Institute for Catalysis at the University of Rostock, 18059 Rostock, Germany
Search for more papers by this authorCorresponding Author
Prof. Jianfeng Chen
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. Zhenyu Sun
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorDr. Neetu Talreja
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorHengcong Tao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. John Texter
School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI, 48197 USA
Search for more papers by this authorCorresponding Author
Prof. Martin Muhler
Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, 44780 Bochum, Germany
Search for more papers by this authorProf. Jennifer Strunk
Leibniz Institute for Catalysis at the University of Rostock, 18059 Rostock, Germany
Search for more papers by this authorCorresponding Author
Prof. Jianfeng Chen
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorGraphical Abstract
The transformation of CO2 into fuels and chemicals by photocatalysis with sunlight is a promising strategy to provide a long-term solution to mitigating global warming and energy-supply problems. Several two-dimensional materials have recently been designed for the photocatalytic reduction of CO2. This Review summarizes the state-of-the-art of such 2D photocatalysts, with special attention paid to the development of improved materials.
Abstract
The transformation of CO2 into fuels and chemicals by photocatalysis is a promising strategy to provide a long-term solution to mitigating global warming and energy-supply problems. Achievements in photocatalysis during the last decade have sparked increased interest in using sunlight to reduce CO2. Traditional semiconductors used in photocatalysis (e.g. TiO2) are not suitable for use in natural sunlight and their performance is not sufficient even under UV irradiation. Some two-dimensional (2D) materials have recently been designed for the catalytic reduction of CO2. These materials still require significant modification, which is a challenge when designing a photocatalytic process. An overarching aim of this Review is to summarize the literature on the photocatalytic conversion of CO2 by various 2D materials in the liquid phase, with special attention given to the development of novel 2D photocatalyst materials to provide a basis for improved materials.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201710509-sup-0001-misc_information.pdf421.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Vergara, C. McKesson, M. Walczak, Energy Policy 2012, 49, 333–345.
- 2S. B. Wang, X. C. Wang, Angew. Chem. Int. Ed. 2016, 55, 2308–2320; Angew. Chem. 2016, 128, 2352–2364.
- 3M. Liu, Y. J. Pang, B. Zhang, P. De Luna, O. Voznyy, J. X. Xu, X. L. Zheng, C. T. Dinh, F. J. Fan, C. H. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Nature 2016, 537, 382–386.
- 4S. K. Kuk, R. K. Singh, D. H. Nam, R. Singh, J. K. Lee, C. B. Park, Angew. Chem. Int. Ed. 2017, 56, 3827–3832; Angew. Chem. 2017, 129, 3885–3890.
- 5J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev. 2015, 115, 12888–12935.
- 6A. D. Handoko, K. F. Li, J. W. Tang, Curr. Opin. Chem. Eng. 2013, 2, 200–206.
- 7K. F. Li, D. Martin, J. W. Tang, Chin. J. Catal. 2011, 32, 879–890.
- 8W. G. Tu, Y. Zhou, Z. G. Zou, Adv. Mater. 2014, 26, 4607–4626.
- 9R. N. Compton, P. W. Reinhardt, C. D. Cooper, J. Chem. Phys. 1975, 63, 3821–3827.
- 10N. Elgrishi, M. B. Chambers, X. Wang, M. Fontecave, Chem. Soc. Rev. 2017, 46, 761–796.
- 11T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637–638.
- 12M. Rudolf, S. V. Kirner, D. M. Guldi, Chem. Soc. Rev. 2016, 45, 612–630.
- 13G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. B. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. N. Xia, Y. L. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, J. A. Robinson, ACS Nano 2015, 9, 11509–11539.
- 14A. Narita, X. Y. Wang, X. L. Feng, K. Mullen, Chem. Soc. Rev. 2015, 44, 6616–6643.
- 15L. C. L. Y. Voon, G. G. Guzman-Verri, MRS Bull. 2014, 39, 366–373.
- 16S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 2009, 102, 236804.
- 17F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, J. F. Jia, Nat. Mater. 2015, 14, 1020–1025.
- 18L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, Y. B. Zhang, Nat. Nanotechnol. 2014, 9, 372–377.
- 19S. L. Zhang, Z. Yan, Y. F. Li, Z. F. Chen, H. B. Zeng, Angew. Chem. Int. Ed. 2015, 54, 3112–3115; Angew. Chem. 2015, 127, 3155–3158.
- 20A. J. Mannix, B. Kiraly, M. C. Hersam, N. P. Guisinger, Nat. Rev. Chem. 2017, 1, 0014.
- 21Z. X. Fan, X. Huang, C. L. Tan, H. Zhang, Chem. Sci. 2015, 6, 95–111.
- 22A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. L. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, N. P. Guisinger, Science 2015, 350, 1513–1516.
- 23M. Chhowalla, Z. F. Liu, H. Zhang, Chem. Soc. Rev. 2015, 44, 2584–2586.
- 24L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A. P. Li, G. Gu, Science 2014, 343, 163–167.
- 25J. Liu, H. Q. Wang, M. Antonietti, Chem. Soc. Rev. 2016, 45, 2308–2326.
- 26D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zolyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patane, L. Eaves, I. V. Grigorieva, V. I. Fal′ko, A. K. Geim, Y. Cao, Nat. Nanotechnol. 2017, 12, 223.
- 27L. Li, Z. Chen, Y. Hu, X. W. Wang, T. Zhang, W. Chen, Q. B. Wang, J. Am. Chem. Soc. 2013, 135, 1213–1216.
- 28J. Y. Zhang, T. Song, Z. J. Zhang, K. Ding, F. Huang, B. Q. Sun, J. Mater. Chem. C 2015, 3, 4402–4406.
- 29S. Ida, C. Ogata, M. Eguchi, W. J. Youngblood, T. E. Mallouk, Y. Matsumoto, J. Am. Chem. Soc. 2008, 130, 7052–7059.
- 30K. Fan, H. Chen, Y. F. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. S. Li, Y. Luo, L. C. Sun, Nat. Commun. 2016, 7, 11981.
- 31K. Peng, L. J. Fu, J. Ouyang, H. M. Yang, Adv. Funct. Mater. 2016, 26, 2666–2675.
- 32C. E. Boott, A. Nazemi, I. Manners, Angew. Chem. Int. Ed. 2015, 54, 13876–13894; Angew. Chem. 2015, 127, 14082–14101.
- 33J. Zhou, X. H. Zha, F. Y. Chen, Q. Ye, P. Eklund, S. Y. Du, Q. Huang, Angew. Chem. Int. Ed. 2016, 55, 5008–5013; Angew. Chem. 2016, 128, 5092–5097.
- 34H. C. Tao, Y. Q. Zhang, Y. N. Gao, Z. Y. Sun, C. Yan, J. Texter, Phys. Chem. Chem. Phys. 2017, 19, 921–960.
- 35S. Yang, M. R. Lohe, K. Mullen, X. Feng, Adv. Mater. 2016, 28, 6213–6221.
- 36Z. P. Chen, W. Zhang, C. A. Palma, A. L. Rizzini, B. L. Liu, A. Abbas, N. Richter, L. Martini, X. Y. Wang, N. Cavani, H. Lu, N. Mishra, C. Coletti, R. Berger, F. Klappenberger, M. Klaui, A. Candini, M. Affronte, C. W. Zhou, V. De Renzi, U. del Pennino, J. V. Barth, H. J. Rader, A. Narita, X. L. Feng, K. Mullen, J. Am. Chem. Soc. 2016, 138, 15488–15496.
- 37K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
- 38J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. Liu, K. S. Chen, M. C. Hersam, ACS Nano 2015, 9, 3596–3604.
- 39Q. Liu, D. Wu, Y. Zhou, H. B. Su, R. Wang, C. F. Zhang, S. C. Yan, M. Xiao, Z. G. Zou, ACS Appl. Mater. Interfaces 2014, 6, 2356–2361.
- 40X. X. Chang, T. Wang, J. L. Gong, Energy Environ. Sci. 2016, 9, 2177–2196.
- 41H. Kisch, Angew. Chem. Int. Ed. 2013, 52, 812–847; Angew. Chem. 2013, 125, 842–879.
- 42K. F. Li, X. Q. An, K. H. Park, M. Khraisheh, J. W. Tang, Catal. Today 2014, 224, 3–12.
- 43O. Ola, M. M. Maroto-Valer, J. Photochem. Photobiol. C 2015, 24, 16–42.
- 44S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372–7408; Angew. Chem. 2013, 125, 7516–7557.
- 45Y. Q. Cai, G. Zhang, Y. W. Zhang, Sci. Rep. 2014, 4, 6677.
- 46P. Niu, Y. Q. Yang, J. C. Yu, G. Liu, H. M. Cheng, Chem. Commun. 2014, 50, 10837–10840.
- 47Y. Zhou, Z. P. Tian, Z. Y. Zhao, Q. Liu, J. H. Kou, X. Y. Chen, J. Gao, S. C. Yan, Z. G. Zou, ACS Appl. Mater. Interfaces 2011, 3, 3594–3601.
- 48N. Sakai, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 2004, 126, 5851–5858.
- 49J. S. Chen, F. Xin, X. H. Yin, T. Y. Xiang, Y. W. Wang, RSC Adv. 2015, 5, 3833–3839.
- 50X. J. Wang, Y. Zhao, F. T. Li, L. J. Dou, Y. P. Li, J. Zhao, Y. J. Hao, Sci. Rep. 2016, 6, 24918.
- 51L. Q. Ye, H. Wang, X. L. Jin, Y. R. Su, D. Q. Wang, H. Q. Xie, X. D. Liu, X. X. Liu, Sol. Energy Mater. Sol. Cells 2016, 144, 732–739.
- 52Y. H. Sang, Z. H. Zhao, M. W. Zhao, P. Hao, Y. H. Leng, H. Liu, Adv. Mater. 2015, 27, 363–369.
- 53X. Y. Chen, Y. Zhou, Q. Liu, Z. D. Li, J. G. Liu, Z. G. Zou, ACS Appl. Mater. Interfaces 2012, 4, 3372–3377.
- 54S. Y. Zhu, S. J. Liang, J. H. Bi, M. H. Liu, L. M. Zhou, L. Wu, X. X. Wang, Green Chem. 2016, 18, 1355–1363.
- 55H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin, K. H. Chen, Nanoscale 2013, 5, 262–268.
- 56C. Gao, Q. Q. Meng, K. Zhao, H. J. Yin, D. W. Wang, J. Guo, S. L. Zhao, L. Chang, M. He, Q. X. Li, H. J. Zhao, X. J. Huang, Y. Gao, Z. Y. Tang, Adv. Mater. 2016, 28, 6485–6490.
- 57H. L. L. Zhuang, R. G. Hennig, J. Phys. Chem. C 2013, 117, 20440–20445.
- 58H. L. L. Zhuang, R. G. Hennig, Chem. Mater. 2013, 25, 3232–3238.
- 59J. W. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 2008, 130, 13885–13891.
- 60M. Dilla, R. Schlögl, J. Strunk, ChemCatChem 2017, 9, 696–704.
- 61W. H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev. 2015, 115, 12936–12973.
- 62N. Sasirekha, S. J. S. Basha, K. Shanthi, Appl. Catal. B 2006, 62, 169–180.
- 63K. Mori, H. Yamashita, M. Anpo, RSC Adv. 2012, 2, 3165–3172.
- 64I. A. Shkrob, T. W. Marin, H. Y. He, P. Zapol, J. Phys. Chem. C 2012, 116, 9450–9460.
- 65Y. F. Ji, Y. Luo, ACS Catal. 2016, 6, 2018–2025.
- 66N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. Y. He, P. Zapol, J. Am. Chem. Soc. 2011, 133, 3964–3971.
- 67S. S. Tan, L. Zou, E. Hu, Catal. Today 2008, 131, 125–129.
- 68A. Pougin, M. Dilla, J. Strunk, Phys. Chem. Chem. Phys. 2016, 18, 10809–10817.
- 69Y. F. Ji, Y. Luo, J. Am. Chem. Soc. 2016, 138, 15896–15902.
- 70G. Yin, M. Nishikawa, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, M. Miyauchi, ACS Nano 2015, 9, 2111–2119.
- 71P. Deines, D. H. Eggler, Geochim. Cosmochim. Acta 2009, 73, 7256–7274.
- 72C. J. Huang, C. Chen, M. W. Zhang, L. H. Lin, X. X. Ye, S. Lin, M. Antonietti, X. C. Wang, Nat. Commun. 2015, 6, 7698.
- 73J. Liu, Z. Y. Hu, Y. Peng, H. W. Huang, Y. Li, M. Wu, X. X. Ke, G. Van Tendeloo, B. L. Su, Appl. Catal. B 2016, 181, 138–145.
- 74Z. Q. He, L. N. Wen, D. Wang, Y. J. Xue, Q. W. Lu, C. W. Wu, J. M. Chen, S. Song, Energy Fuels 2014, 28, 3982–3993.
- 75H. Xu, S. X. Ouyang, P. Li, T. Kako, J. H. Ye, ACS Appl. Mater. Interfaces 2013, 5, 1348–1354.
- 76H. Xu, S. X. Ouyang, P. Li, T. Kako, J. H. Ye, ACS Appl. Mater. Interfaces 2013, 5, 8262.
- 77X. Xin, T. Xu, L. Wang, C. Wang, Sci. Rep. 2016, 6, 23684.
- 78X. Zhang, G. Zuo, X. Lu, C. Tang, S. Cao, M. Yu, J. Colloid Interface Sci. 2017, 490, 774–782.
- 79Z. Q. He, J. T. Tang, J. Shen, J. M. Chen, S. Song, Appl. Surf. Sci. 2016, 364, 416–427.
- 80Y. S. Liao, Z. N. Hu, Q. Gu, C. Xue, Molecules 2015, 20, 18847–18855.
- 81M. L. Li, L. X. Zhang, X. Q. Fan, Y. J. Zhou, M. Y. Wu, J. L. Shi, J. Mater. Chem. A 2015, 3, 5189–5196.
- 82X. Y. Kong, W. P. C. Lee, W. J. Ong, S. P. Chai, A. R. Mohamed, ChemCatChem 2016, 8, 3074–3081.
- 83J. R. Jin, Y. J. Wang, T. He, RSC Adv. 2015, 5, 100244–100250.
- 84L. Q. Ye, X. L. Jin, C. Liu, C. H. Ding, H. Q. Xie, K. H. Chu, P. K. Wong, Appl. Catal. B 2016, 187, 281–290.
- 85H. P. Li, T. X. Hu, N. Du, R. J. Zhang, J. Q. Liu, W. G. Hou, Appl. Catal. B 2016, 187, 342–349.
- 86L. Q. Ye, X. L. Jin, X. X. Ji, C. Liu, Y. R. Su, H. Q. Xie, C. Liu, Chem. Eng. J. 2016, 291, 39–46.
- 87D. Wu, L. Q. Ye, H. Y. Yip, P. K. Wong, Catal. Sci. Technol. 2017, 7, 265–271.
- 88Y. F. Zhao, G. B. Chen, T. Bian, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, L. J. Smith, D. O'Hare, T. R. Zhang, Adv. Mater. 2015, 27, 7824–7831.
- 89S. Y. Zhu, S. J. Liang, Y. Wang, X. Y. Zhang, F. Y. Li, H. X. Lin, Z. Z. Zhang, X. X. Wang, Appl. Catal. B 2016, 187, 11–18.
- 90N. Zhang, M. Q. Yang, S. Q. Liu, Y. G. Sun, Y. J. Xu, Chem. Rev. 2015, 115, 10307–10377.
- 91I. Shown, H. C. Hsu, Y. C. Chang, C. H. Lin, P. K. Roy, A. Ganguly, C. H. Wang, J. K. Chang, C. I. Wu, L. C. Chen, K. H. Chen, Nano Lett. 2014, 14, 6097–6103.
- 92P. Kumar, B. Sain, S. L. Jain, J. Mater. Chem. A 2014, 2, 11246–11253.
- 93P. Kumar, A. Bansiwal, N. Labhsetwar, S. L. Jain, Green Chem. 2015, 17, 1605–1609.
- 94P. Kumar, H. P. Mungse, S. Cordier, R. Boukherroub, O. P. Khatri, S. L. Jain, Carbon 2015, 94, 91–100.
- 95P. Kumar, H. P. Mungse, O. P. Khatri, S. L. Jain, RSC Adv. 2015, 5, 54929–54935.
- 96X. X. Qiao, Q. Q. Li, R. N. Schaugaard, B. W. Noffke, Y. J. Liu, D. P. Li, L. Liu, K. Raghavachari, L. S. Li, J. Am. Chem. Soc. 2017, 139, 3934–3937.
- 97W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116, 7159–7329.
- 98X. Li, J. G. Yu, M. Jaroniec, Chem. Soc. Rev. 2016, 45, 2603–2636.
- 99W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, Chem. Commun. 2015, 51, 858–861.
- 100W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, A. R. Mohamed, Nano Energy 2015, 13, 757–770.
- 101L. Shi, K. Chang, H. B. Zhang, X. Hai, L. Q. Yang, T. Wang, J. H. Ye, Small 2016, 12, 4431–4439.
- 102Y. Huang, Y. J. Wang, Y. Q. Bi, J. R. Jin, M. F. Ehsan, M. Fu, T. He, RSC Adv. 2015, 5, 33254–33261.
- 103S. Qamar, F. C. Lei, L. Liang, S. Gao, K. T. Liu, Y. F. Sun, W. X. Ni, Y. Xie, Nano Energy 2016, 26, 692–698.
- 104S. Gao, B. C. Gu, X. C. Jiao, Y. F. Sun, X. L. Zu, F. Yang, W. G. Zhu, C. M. Wang, Z. M. Feng, B. J. Ye, Y. Xie, J. Am. Chem. Soc. 2017, 139, 3438–3445.
- 105Y. F. Sun, H. Cheng, S. Gao, Z. H. Sun, Q. H. Liu, Q. Liu, F. C. Lei, T. Yao, J. F. He, S. Q. Wei, Y. Xie, Angew. Chem. Int. Ed. 2012, 51, 8727–8731; Angew. Chem. 2012, 124, 8857–8861.
- 106X. C. Jiao, Z. W. Chen, X. D. Li, Y. F. Sun, S. Gao, W. S. Yan, C. M. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 2017, 139, 7586–7594.
- 107D. Kozawa, R. Kumar, A. Carvalho, K. K. Amara, W. J. Zhao, S. F. Wang, M. L. Toh, R. M. Ribeiro, A. H. C. Neto, K. Matsuda, G. Eda, Nat. Commun. 2014, 5, 4543.
- 108M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss, A. Salehi-Khojin, Science 2016, 353, 467–470.
- 109L. Zhang, W. Z. Wang, D. Jiang, E. P. Gao, S. M. Sun, Nano Res. 2015, 8, 821–831.
- 110N. Ahmed, M. Morikawa, Y. Izumi, Catal. Today 2012, 185, 263–269.
- 111S. Kawamura, M. C. Puscasu, Y. Yoshida, Y. Izumi, G. Carja, Appl. Catal. A 2015, 504, 238–247.
- 112Q. Wang, D. O'Hare, Chem. Rev. 2012, 112, 4124–4155.
- 113V. Strauss, R. A. Schafer, F. Hauke, A. Hirsch, D. M. Guldi, J. Am. Chem. Soc. 2015, 137, 13079–13086.
- 114A. Roth, M. E. Ragoussi, L. Wibmer, G. Katsukis, G. de la Torre, T. Torres, D. M. Guldi, Chem. Sci. 2014, 5, 3432–3438.
- 115L. Wibmer, L. M. O. Lourenco, A. Roth, G. Katsukis, M. G. P. M. S. Neves, J. A. S. Cavaleiro, J. P. C. Tome, T. Torres, D. M. Guldi, Nanoscale 2015, 7, 5674–5682.
- 116X. Jiang, J. Nisar, B. Pathak, J. J. Zhao, R. Ahuja, J. Catal. 2013, 299, 204–209.
- 117X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80.
- 118G. G. Zhang, Z. A. Lan, X. C. Wang, Angew. Chem. Int. Ed. 2016, 55, 15712–15727; Angew. Chem. 2016, 128, 15940–15956.
- 119P. Niu, L. L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater. 2012, 22, 4763–4770.
- 120Z. L. Guo, J. Zhou, L. G. Zhu, Z. M. Sun, J. Mater. Chem. A 2016, 4, 11446–11452.
- 121J. Liu, X. B. Li, D. Wang, W. M. Lau, P. Peng, L. M. Liu, J. Chem. Phys. 2014, 140, 054707.
- 122J. Hu, Z. K. Guo, P. E. Mcwilliams, J. E. Darges, D. L. Druffel, A. M. Moran, S. C. Warren, Nano Lett. 2016, 16, 74–79.
- 123J. L. Zhang, S. T. Zhao, C. Han, Z. Z. Wang, S. Zhong, S. Sun, R. Guo, X. Zhou, C. D. Gu, K. Di Yuan, Z. Y. Li, W. Chen, Nano Lett. 2016, 16, 4903–4908.
- 124L. Z. Wang, T. Sasaki, Chem. Rev. 2014, 114, 9455–9486.
- 125F. C. Lei, L. Zhang, Y. F. Sun, L. Liang, K. T. Liu, J. Q. Xu, Q. Zhang, B. C. Pan, Y. Luo, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 9266–9270; Angew. Chem. 2015, 127, 9398–9402.
- 126K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata, T. Tanaka, Chem. Eur. J. 2014, 20, 9906–9909.
- 127G. Liu, L. Z. Wang, C. H. Sun, X. X. Yan, X. W. Wang, Z. G. Chen, S. C. Smith, H. M. Cheng, G. Q. Lu, Chem. Mater. 2009, 21, 1266–1274.
- 128J. Y. Fu, C. J. Jiang, B. Cheng, W. You, J. G. Yu, Small 2017, 13, 1603938.
- 129H. Jin, Y. Dai, B. B. Huang, Sci. Rep. 2016, 6, 23104.
- 130E. Velez-Fort, C. Mathieu, E. Pallecchi, M. Pigneur, M. G. Silly, R. Belkhou, M. Marangolo, A. Shukla, F. Sirotti, A. Ouerghi, ACS Nano 2012, 6, 10893–10900.
- 131Y. Nie, W. N. Wang, Y. Jiang, J. Fortner, P. Biswas, Catal. Sci. Technol. 2016, 6, 6187–6196.
- 132X. Y. Kong, Y. Y. Choo, S. P. Chai, A. K. Soh, A. R. Mohamed, Chem. Commun. 2016, 52, 14242–14245.
- 133H. Fujiwara, H. Hosokawa, K. Murakoshi, A. Y. Wada, S. Yanagida, T. Okada, H. Kobayashi, J. Phys. Chem. B 1997, 101, 8270–8278.
- 134J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 2014, 136, 8839–8842.
- 135J. Pan, G. Liu, G. M. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2011, 50, 2133–2137; Angew. Chem. 2011, 123, 2181–2185.
- 136S. Bai, J. Jiang, Q. Zhang, Y. J. Xiong, Chem. Soc. Rev. 2015, 44, 2893–2939.
- 137S. Selcuk, A. Selloni, Nat. Mater. 2016, 15, 1107–1112.
- 138L. J. Liu, Y. Q. Jiang, H. L. Zhao, J. T. Chen, J. L. Cheng, K. S. Yang, Y. Li, ACS Catal. 2016, 6, 1097–1108.
- 139Y. T. Liang, B. K. Vijayan, K. A. Gray, M. C. Hersam, Nano Lett. 2011, 11, 2865–2870.
- 140H. Liu, H. T. Zhang, P. Shen, F. X. Chen, S. J. Zhang, Langmuir 2016, 32, 254–264.
- 141F. Dong, T. Xiong, Y. J. Sun, Y. X. Zhang, Y. Zhou, Chem. Commun. 2015, 51, 8249–8252.
- 142J. C. Wang, H. C. Yao, Z. Y. Fan, L. Zhang, J. S. Wang, S. Q. Zang, Z. J. Li, ACS Appl. Mater. Interfaces 2016, 8, 3765–3775.
- 143D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O'Regan, G. S. Duesberg, V. Nicolosi, J. N. Coleman, Nat. Commun. 2015, 6, 8563.
- 144G. Zhou, X. Y. Xu, J. Y. Yu, B. Feng, Y. Zhang, J. G. Hu, Y. X. Zhou, CrystEngComm 2014, 16, 9025–9032.
- 145Y. L. Min, G. Q. He, Q. J. Xu, Y. C. Chen, J. Mater. Chem. A 2014, 2, 2578–2584.