Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion
Qinbai Yun
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute for Sports Research (ISR), Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
These authors contributed equally to this work.
Search for more papers by this authorDr. Qipeng Lu
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiao Zhang
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Chaoliang Tan
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Prof. Hua Zhang
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorQinbai Yun
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute for Sports Research (ISR), Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
These authors contributed equally to this work.
Search for more papers by this authorDr. Qipeng Lu
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiao Zhang
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Chaoliang Tan
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Prof. Hua Zhang
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorGraphical Abstract
Electrochemistry in 3D: Three-dimensional transition-metal dichalcogenide architectures have shown great promise for electrochemical energy storage and conversion. This Review summarizes the commonly used strategies for the construction of such architectures, as well as their application in rechargeable batteries, supercapacitors, and electrocatalytic hydrogen evolution.
Abstract
Transition-metal dichalcogenides (TMDs) have attracted considerable attention in recent years because of their unique properties and promising applications in electrochemical energy storage and conversion. However, the limited number of active sites as well as blocked ion and mass transport severely impair their electrochemical performance. The construction of three-dimensional (3D) architectures from TMD nanomaterials has been proven to be an effective strategy to solve the aforementioned problems as a result of their large specific surface areas and short ion and mass transport distances. This Review summarizes the commonly used routes to build 3D TMD architectures and highlights their applications in electrochemical energy storage and conversion, including batteries, supercapacitors, and electrocatalytic hydrogen evolution. The challenges and outlook in this research area are also discussed.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669;
- 1bA. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191;
- 1cX. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 2011, 7, 1876–1902;
- 1dH. Zhang, ACS Nano 2015, 9, 9451–9469.
- 2
- 2aQ. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699–712;
- 2bX. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Appl. Phys. Rev. 2017, 4, 021306.
- 3
- 3aZ. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 2011, 50, 11093–11097; Angew. Chem. 2011, 123, 11289–11293;
- 3bJ. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568–571;
- 3cR. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, J. N. Coleman, Adv. Mater. 2011, 23, 3944–3948;
- 3dZ. Y. Zeng, T. Sun, J. X. Zhu, X. Huang, Z. Y. Yin, G. Lu, Z. X. Fan, Q. Y. Yan, H. H. Hng, H. Zhang, Angew. Chem. Int. Ed. 2012, 51, 9052–9056; Angew. Chem. 2012, 124, 9186–9190;
- 3eC. Tan, H. Zhang, Chem. Soc. Rev. 2015, 44, 2713–2731;
- 3fC. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Chem. Rev. 2017, 117, 6225–6331;
- 3gC. L. Tan, Z. C. Lai, H. Zhang, Adv. Mater. 2017, 29, 1701392;
- 3hC. Tan, L. Zhao, P. Yu, Y. Huang, B. Chen, Z. Lai, X. Qi, M. H. Goh, X. Zhang, S. Han, X.-J. Wu, Z. Liu, Y. Zhao, H. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7842–7846; Angew. Chem. 2017, 129, 7950–7954.
- 4
- 4aM. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263–275;
- 4bR. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones, Acc. Chem. Res. 2015, 48, 56–64;
- 4cK. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac 9439.
- 5
- 5aG. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, Phys. Rev. B 1998, 57, 6666–6671;
- 5bK. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
- 6
- 6aM. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274–10277;
- 6bD. Voiry, M. Salehi, R. Silva, T. Fujita, M. W. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222–6227;
- 6cM. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 2015, 10, 313–318;
- 6dC. L. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Y. Zeng, J. Z. Chen, Y. Huang, P. Ercius, Z. M. Luo, X. Y. Qi, B. Chen, Z. C. Lai, B. Li, X. Zhang, J. Yang, Y. Zong, C. H. Jin, H. M. Zheng, C. Kloc, H. Zhang, Small 2016, 12, 1866–1874.
- 7
- 7aX. Chen, C. Li, M. Gratzel, R. Kostecki, S. S. Mao, Chem. Soc. Rev. 2012, 41, 7909–7937;
- 7bQ. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Chem. Soc. Rev. 2013, 42, 3127–3171;
- 7cJ. Liu, H. Cao, B. Jiang, Y. Xue, L. Fu, Sci. China Mater. 2016, 59, 459–474.
- 8B. Mendoza-Sánchez, Y. Gogotsi, Adv. Mater. 2016, 28, 6104–6135.
- 9
- 9aD. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 2016, 28, 6197–6206;
- 9bY. Yan, B. Xia, Z. Xu, X. Wang, ACS Catal. 2014, 4, 1693–1705.
- 10
- 10aJ. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, M. G. Kanatzidis, J. M. Gibson, J. Huang, ACS Nano 2011, 5, 8943–8949;
- 10bL. Cong, H. Xie, J. Li, Adv. Energy Mater. 2017, 7, 1601906.
- 11
- 11aX. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev. 2013, 42, 1934–1946;
- 11bY. Shi, H. Li, L. J. Li, Chem. Soc. Rev. 2015, 44, 2744–2756;
- 11cX. Zhang, Z. C. Lai, C. L. Tan, H. Zhang, Angew. Chem. Int. Ed. 2016, 55, 8816–8838; Angew. Chem. 2016, 128, 8960–8984;
- 11dJ. P. Shi, Q. Q. Ji, Z. F. Liu, Y. F. Zhang, Adv. Energy Mater. 2016, 6, 1600459;
- 11eX. H. Cao, C. L. Tan, X. Zhang, W. Zhao, H. Zhang, Adv. Mater. 2016, 28, 6167–6196.
- 12L. Zhang, H. B. Wu, Y. Yan, X. Wang, X. W. D. Lou, Energy Environ. Sci. 2014, 7, 3302–3306.
- 13X. Y. Yu, H. Hu, Y. W. Wang, H. Y. Chen, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 7395–7398; Angew. Chem. 2015, 127, 7503–7506.
- 14Y. F. Zhang, Y. Wang, J. Yang, W. H. Shi, H. Y. Yang, W. Huang, X. C. Dong, 2D Mater. 2016, 3, 024001.
- 15W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 2013, 9, 140–147.
- 16
- 16aW. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 2013, 6, 2216–2221;
- 16bJ. Wang, J. L. Liu, D. L. Chao, J. X. Yan, J. Y. Lin, Z. X. Shen, Adv. Mater. 2014, 26, 7162–7169;
- 16cJ. Wang, J. Liu, H. Yang, D. Chao, J. Yan, S. V. Savilov, J. Lin, Z. X. Shen, Nano Energy 2016, 20, 1–10.
- 17
- 17aF. Xiong, Z. Cai, L. Qu, P. Zhang, Z. Yuan, O. K. Asare, W. Xu, C. Lin, L. Mai, ACS Appl. Mater. Interfaces 2015, 7, 12625–12630;
- 17bR. Ren, M. S. Faber, R. Dziedzic, Z. H. Wen, S. Jin, S. Mao, J. H. Chen, Nanotechnology 2015, 26, 494001;
- 17cJ. Miao, F. X. Xiao, H. B. Yang, S. Y. Khoo, J. Chen, Z. Fan, Y. Y. Hsu, H. M. Chen, H. Zhang, B. Liu, Sci. Adv. 2015, 1, e 1500259;
- 17dT. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Adv. Energy Mater. 2017, 7, 1601843.
- 18F. Zhou, S. Xin, H. W. Liang, L. T. Song, S. H. Yu, Angew. Chem. Int. Ed. 2014, 53, 11552–11556; Angew. Chem. 2014, 126, 11736–11740.
- 19X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, Adv. Energy Mater. 2016, 6, 1502161.
- 20C.-B. Ma, X. Qi, B. Chen, S. Bao, Z. Yin, X.-J. Wu, Z. Luo, J. Wei, H.-L. Zhang, H. Zhang, Nanoscale 2014, 6, 5624–5629.
- 21H. Li, X. Wang, B. Ding, G. Pang, P. Nie, L. Shen, X. Zhang, ChemElectroChem 2014, 1, 1118–1125.
- 22P. p. Wang, H. Sun, Y. Ji, W. Li, X. Wang, Adv. Mater. 2014, 26, 964–969.
- 23S. Zhang, B. V. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 2015, 9, 12464–12472.
- 24
- 24aY. J. Gong, S. B. Yang, L. Zhan, L. L. Ma, R. Vajtai, P. M. Ajayan, Adv. Funct. Mater. 2014, 24, 125–130;
- 24bW. J. Zhou, K. Zhou, D. M. Hou, X. J. Liu, G. Q. Li, Y. H. Sang, H. Liu, L. G. Li, S. W. Chen, ACS Appl. Mater. Interfaces 2014, 6, 21534–21540;
- 24cJ. Yao, B. Liu, S. Ozden, J. Wu, S. Yang, M.-T. F. Rodrigues, K. Kalaga, P. Dong, P. Xiao, Y. Zhang, Electrochim. Acta 2015, 176, 103–111;
- 24dL. Jiang, B. Lin, X. Li, X. Song, H. Xia, L. Li, H. Zeng, ACS Appl. Mater. Interfaces 2016, 8, 2680–2687;
- 24eY. Wang, D. Z. Kong, W. H. Shi, B. Liu, G. J. Sim, Q. Ge, H. Y. Yang, Adv. Energy Mater. 2016, 6, 1601057.
- 25X. Chen, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu, P. Hu, Adv. Funct. Mater. 2016, 26, 8537–8544.
- 26X. Wang, X. Gan, T. Hu, K. Fujisawa, Y. Lei, Z. Lin, B. Xu, Z. H. Huang, F. Kang, M. Terrones, R. Lv, Adv. Mater. 2017, 29, 1603617.
- 27
- 27aJ. M. Soon, K. P. Loh, Electrochem. Solid-State Lett. 2007, 10, A 250–A254;
- 27bB. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, ACS Nano 2013, 7, 8051–8058;
- 27cD. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Nano Lett. 2013, 13, 1341–1347;
- 27dY. Yang, H. L. Fei, G. D. Ruan, C. S. Xiang, J. M. Tour, Adv. Mater. 2014, 26, 8163–8168.
- 28K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang, Z. Cheng, M. Safdar, J. He, ACS Nano 2014, 8, 8468–8476.
- 29
- 29aY. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. J. Zhang, K. H. Wei, L. J. Li, Adv. Mater. 2013, 25, 756–760;
- 29bX. M. Geng, W. Wu, N. Li, W. W. Sun, J. Armstrong, A. Al-hilo, M. Brozak, J. B. Cui, T. P. Chen, Adv. Funct. Mater. 2014, 24, 6123–6129.
- 30
- 30aJ. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963–969;
- 30bY. W. Tan, P. Liu, L. Y. Chen, W. T. Cong, Y. Ito, J. H. Han, X. W. Guo, Z. Tang, T. Fujita, A. Hirata, M. W. Chen, Adv. Mater. 2014, 26, 8023–8028.
- 31
- 31aW.-H. Ryu, J.-W. Jung, K. Park, S.-J. Kim, I.-D. Kim, Nanoscale 2014, 6, 10975–10981;
- 31bC. B. Zhu, X. K. Mu, P. A. van Aken, Y. Yu, J. Maier, Angew. Chem. Int. Ed. 2014, 53, 2152–2156; Angew. Chem. 2014, 126, 2184–2188;
- 31cD. Kong, H. He, Q. Song, B. Wang, W. Lv, Q.-H. Yang, L. Zhi, Energy Environ. Sci. 2014, 7, 3320–3325;
- 31dH. Zhu, F. L. Lyu, M. L. Du, M. Zhang, Q. F. Wane, J. M. Yao, B. C. Guo, ACS Appl. Mater. Interfaces 2014, 6, 22126–22137;
- 31eX. Q. Xiong, W. Luo, X. L. Hu, C. J. Chen, L. Qie, D. F. Hou, Y. H. Huang, Sci. Rep. 2015, 5, 9254.
- 32D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature 2007, 448, 457–460.
- 33L. David, R. Bhandavat, G. Singh, ACS Nano 2014, 8, 1759–1770.
- 34
- 34aY. Liu, W. Wang, Y. Wang, X. Peng, Nano Energy 2014, 7, 25–32;
- 34bJ. J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, S. Z. Qiao, Adv. Mater. 2015, 27, 4234–4241.
- 35J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, J. Am. Chem. Soc. 2011, 133, 17832–17838.
- 36L. L. Hench, J. K. West, Chem. Rev. 1990, 90, 33–72.
- 37
- 37aM. Moner-Girona, A. Roig, E. Molins, J. Llibre, J. Sol-Gel Sci. Technol. 2003, 26, 645–649;
- 37bM. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, Jr., T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067–14069;
- 37cJ. L. Mohanan, I. U. Arachchige, S. L. Brock, Science 2005, 307, 397–400.
- 38S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, J. Kong, Sci. Rep. 2012, 2, 849.
- 39M. A. Worsley, S. J. Shin, M. D. Merrill, J. Lenhardt, A. J. Nelson, L. Y. Woo, A. E. Gash, T. F. Baumann, C. A. Orme, ACS Nano 2015, 9, 4698–4705.
- 40X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li, Z. Chang, J. Mater. Chem. A 2016, 4, 51–58.
- 41
- 41aN. S. Choi, Z. H. Chen, S. A. Freunberger, X. L. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Angew. Chem. Int. Ed. 2012, 51, 9994–10024; Angew. Chem. 2012, 124, 10134–10166;
- 41bN. Mahmood, T. Y. Tang, Y. L. Hou, Adv. Energy Mater. 2016, 6, 1600374;
- 41cP. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19–29;
- 41dJ. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- 42
- 42aC. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Chem. Soc. Rev. 2010, 39, 3115–3141;
- 42bJ. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. Lou, Adv. Mater. 2012, 24, 5166–5180;
- 42cR. J. Chen, R. Luo, Y. X. Huang, F. Wu, L. Li, Adv. Sci. 2016, 3, 1600051.
- 43
- 43aT. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 2014, 7, 209–231;
- 43bT. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, Adv. Sci. 2017, 4, 1600289.
- 44S. Chabi, C. Peng, D. Hu, Y. Q. Zhu, Adv. Mater. 2014, 26, 2440–2445.
- 45
- 45aL. Yu, H. B. Wu, X. W. Lou, Acc. Chem. Res. 2017, 50, 293–301;
- 45bL. Yu, H. Hu, H. B. Wu, X. W. D. Lou, Adv. Mater. 2017, 29, 1604563.
- 46B. Guo, K. Yu, H. Song, H. Li, Y. Tan, H. Fu, C. Li, X. Lei, Z. Zhu, Nanoscale 2016, 8, 420–430.
- 47
- 47aY. Wang, L. Yu, X. W. D. Lou, Angew. Chem. Int. Ed. 2016, 55, 7423–7426; Angew. Chem. 2016, 128, 7549–7552;
- 47bM. Wang, G. D. Li, H. Y. Xu, Y. T. Qian, J. Yang, ACS Appl. Mater. Interfaces 2013, 5, 1003–1008.
- 48Y. Ko, Y. Kang, S. Park, Nanoscale 2014, 6, 4508–4512.
- 49Y. Yang, S. Wang, J. Zhang, H. Li, Z. Tang, X. Wang, Inorg. Chem. Front. 2015, 2, 931–937.
- 50J. B. Ding, Y. Zhou, Y. G. Li, S. J. Guo, X. Q. Huang, Chem. Mater. 2016, 28, 2074–2080.
- 51
- 51aL. R. Hu, Y. M. Ren, H. X. Yang, Q. Xu, ACS Appl. Mater. Interfaces 2014, 6, 14644–14652;
- 51bF. Sun, Y. Wei, J. Chen, D. Long, L. Ling, Y. Li, J. Shi, Nanoscale 2015, 7, 13043–13050;
- 51cZ. Wan, J. Shao, J. Yun, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Small 2014, 10, 4975–4981.
- 52
- 52aX. Zhou, L.-J. Wan, Y.-G. Guo, Nanoscale 2012, 4, 5868–5871;
- 52bX. Xu, Z. Y. Fan, X. Y. Yu, S. J. Ding, D. M. Yu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1400902.
- 53S. J. Ding, J. S. Chen, X. W. Lou, Chem. Eur. J. 2011, 17, 13142–13145.
- 54H. L. Yu, C. Ma, B. H. Ge, Y. J. Chen, Z. Xu, C. L. Zhu, C. Y. Li, Q. Y. Ouyang, P. Gao, J. Q. Li, C. W. Sun, L. H. Qi, Y. M. Wang, F. H. Li, Chem. Eur. J. 2013, 19, 5818–5823.
- 55
- 55aX. H. Cao, Y. M. Shi, W. H. Shi, X. H. Rui, Q. Y. Yan, J. Kong, H. Zhang, Small 2013, 9, 3433–3438;
- 55bY. M. Chen, X. Y. Yu, Z. Li, U. Paik, X. W. Lou, Sci. Adv. 2016, 2, e 1600021.
- 56J. Z. Wang, L. Lu, M. Lotya, J. N. Coleman, S. L. Chou, H. K. Liu, A. I. Minett, J. Chen, Adv. Energy Mater. 2013, 3, 798–805.
- 57
- 57aY.-T. Liu, X.-D. Zhu, Z.-Q. Duan, X.-M. Xie, Chem. Commun. 2013, 49, 10305–10307;
- 57bC. B. Zhu, X. K. Mu, P. A. van Aken, J. Maier, Y. Yu, Adv. Energy Mater. 2015, 5, 1401170.
- 58B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935.
- 59
- 59aD. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431–3448; Angew. Chem. 2015, 127, 3495–3513;
- 59bR. C. Massé, E. Uchaker, G. Cao, Sci. China Mater. 2015, 58, 715–766;
- 59cH. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, K. Kang, Adv. Energy Mater. 2016, 6, 1600943.
- 60W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Acc. Chem. Res. 2016, 49, 231–240.
- 61Y. Ko, S. Choi, S. Park, Y. Kang, Nanoscale 2014, 6, 10511–10515.
- 62S. H. Choi, Y. C. Kang, Nanoscale 2015, 7, 3965–3970.
- 63S. H. Choi, Y. C. Kang, Nanoscale 2016, 8, 4209–4216.
- 64Y. Lu, Q. Zhao, N. Zhang, K. Lei, F. Li, J. Chen, Adv. Funct. Mater. 2016, 26, 911–918.
- 65S. H. Choi, Y. N. Ko, J. K. Lee, Y. C. Kang, Adv. Funct. Mater. 2015, 25, 1780–1788.
- 66
- 66aY. J. Hong, M. Y. Son, Y. C. Kang, Adv. Mater. 2013, 25, 2279–2283;
- 66bX. Y. Yu, L. Yu, X. W. Lou, Adv. Energy Mater. 2016, 6, 1501333.
- 67S. H. Choi, Y. C. Kang, ACS Appl. Mater. Interfaces 2015, 7, 24694–24702.
- 68C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier, Y. Yu, J. Mater. Chem. A 2015, 3, 20487–20493.
- 69
- 69aY. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441;
- 69bZ. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605–5634;
- 69cM. Liu, X. Qin, Y.-B. He, B. Li, F. Kang, J. Mater. Chem. A 2017, 5, 5222–5234.
- 70
- 70aX. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500–506;
- 70bH. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644–2647;
- 70cG. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265–1270;
- 70dC. Zhang, W. Lv, W. G. Zhang, X. Y. Zheng, M. B. Wu, W. Wei, Y. Tao, Z. J. Li, Q. H. Yang, Adv. Energy Mater. 2014, 4, 1301565;
- 70eC. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S. Z. Qiao, Adv. Funct. Mater. 2017, 1702524.
- 71Z. W. Seh, J. H. Yu, W. Li, P. C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017.
- 72J. Park, B. C. Yu, J. S. Park, J. W. Choi, C. Kim, Y. E. Sung, J. B. Goodenough, Adv. Energy Mater. 2017, 7, 1602567.
- 73
- 73aD. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724–727;
- 73bH. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265–2279.
- 74
- 74aD. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, M. Brunelli, Adv. Mater. 2007, 19, 4260–4267;
- 74bY. L. Liang, R. J. Feng, S. Q. Yang, H. Ma, J. Liang, J. Chen, Adv. Mater. 2011, 23, 640–643;
- 74cY. Liang, H. D. Yoo, Y. Li, J. Shuai, H. A. Calderon, F. C. Robles Hernandez, L. C. Grabow, Y. Yao, Nano Lett. 2015, 15, 2194–2202.
- 75G. Zhang, H. Liu, J. Qu, J. Li, Energy Environ. Sci. 2016, 9, 1190–1209.
- 76X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang, B. Geng, J. Mater. Chem. A 2014, 2, 15958–15963.
- 77
- 77aM. S. Javed, S. G. Dai, M. J. Wang, D. L. Guo, L. Chen, X. Wang, C. U. Hu, Y. Xi, J. Power Sources 2015, 285, 63–69;
- 77bS. Z. Wang, J. Y. Zhu, Y. L. Shao, W. R. Li, Y. Z. Wu, L. Zhang, X. P. Hao, Chem. Eur. J. 2017, 23, 3438–3446.
- 78
- 78aL. Ren, G. Zhang, Z. Yan, L. Kang, H. Xu, F. Shi, Z. Lei, Z. H. Liu, ACS Appl. Mater. Interfaces 2015, 7, 28294–28302;
- 78bJ. X. Zhu, W. P. Sun, D. Yang, Y. Zhang, H. H. Hoon, H. Zhang, Q. Y. Yan, Small 2015, 11, 4123–4129;
- 78cC. H. Sha, B. Lu, H. Y. Mao, J. P. Cheng, X. H. Pan, J. G. Lu, Z. Z. Ye, Carbon 2016, 99, 26–34.
- 79N. Choudhary, M. Patel, Y.-H. Ho, N. B. Dahotre, W. Lee, J. Y. Hwang, W. Choi, J. Mater. Chem. A 2015, 3, 24049–24054.
- 80N. Choudhary, C. Li, H. S. Chung, J. Moore, J. Thomas, Y. Jung, ACS Nano 2016, 10, 10726–10735.
- 81
- 81aX. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, H. Zhu, Phys. Chem. Chem. Phys. 2013, 15, 17752–17757;
- 81bG. M. Zhou, F. Li, H. M. Cheng, Energy Environ. Sci. 2014, 7, 1307–1338;
- 81cL. Li, Z. Wu, S. Yuan, X. B. Zhang, Energy Environ. Sci. 2014, 7, 2101–2122.
- 82G. Z. Sun, J. Q. Liu, X. Zhang, X. W. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Angew. Chem. Int. Ed. 2014, 53, 12576–12580; Angew. Chem. 2014, 126, 12784–12788.
- 83G. Z. Sun, X. Zhang, R. Z. Lin, J. Yang, H. Zhang, P. Chen, Angew. Chem. Int. Ed. 2015, 54, 4651–4656; Angew. Chem. 2015, 127, 4734–4739.
- 84J. Liang, G. Y. Zhu, C. X. Wang, Y. R. Wang, H. F. Zhu, Y. Hu, H. L. Lv, R. P. Chen, L. B. Ma, T. Chen, Z. Jin, J. Liu, Adv. Energy Mater. 2017, 7, 1601208.
- 85
- 85aF. Wang, T. A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Nanoscale 2015, 7, 19764–19788;
- 85bQ. P. Lu, Y. F. Yu, Q. L. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917–1933.
- 86
- 86aX. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148–5180;
- 86bY. Jiao, Y. Zheng, K. Davey, S. Z. Qiao, Nat. Energy 2016, 1, 16130.
- 87
- 87aY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086;
- 87bY. P. Zhu, C. Guo, Y. Zheng, S. Z. Qiao, Acc. Chem. Res. 2017, 50, 915–923.
- 88
- 88aH. Tributsch, Ber. Bunsen-Ges. 1977, 81, 361–369;
- 88bH. Tributsch, J. Bennett, J. Electroanal. Chem. Interfac. 1977, 81, 97–111.
- 89B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308–5309.
- 90T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100–102.
- 91C. Tsai, K. Chan, F. Abild-Pedersen, J. K. Nørskov, Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.
- 92J. Verble, T. Wietling, P. Reed, Solid State Commun. 1972, 11, 941–944.
- 93
- 93aA. W. Maijenburg, M. Regis, A. N. Hattori, H. Tanaka, K.-S. Choi, J. E. ten Elshof, ACS Appl. Mater. Interfaces 2014, 6, 2003–2010;
- 93bX. Lu, Y. W. Lin, H. F. Dong, W. H. Dai, X. Chen, X. H. Qu, X. J. Zhang, Sci. Rep. 2017, 7, 42309;
- 93cS. Liu, X. Zhang, J. Zhang, Z. Lei, X. Liang, B. Chen, Sci. China Mater. 2016, 59, 1051–1061.
- 94
- 94aA. J. Smith, Y. H. Chang, K. Raidongia, T. Y. Chen, L. J. Li, J. Huang, Adv. Energy Mater. 2014, 4, 1400398;
- 94bS. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Angew. Chem. Int. Ed. 2014, 53, 12594–12599; Angew. Chem. 2014, 126, 12802–12807;
- 94cS. Chen, J. Duan, Y. Tang, B. Jin, S. Z. Qiao, Nano Energy 2015, 11, 11–18;
- 94dX. Li, L. Zhang, X. Zang, X. Li, H. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 10866–10873.
- 95See Ref. [94a].
- 96
- 96aJ. F. Xie, H. Zhang, S. Li, R. X. Wang, X. Sun, M. Zhou, J. F. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807–5813;
- 96bJ. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881–17888.
- 97Z. Lu, Y. Li, X. Lei, J. Liu, X. Sun, Mater. Horiz. 2015, 2, 294–298.
- 98Z. Y. Lu, W. Zhu, X. Y. Yu, H. C. Zhang, Y. J. Li, X. M. Sun, X. W. Wang, H. Wang, J. M. Wang, J. Luo, X. D. Lei, L. Jiang, Adv. Mater. 2014, 26, 2683–2687.
- 99M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 2014, 136, 10053–10061.
- 100
- 100aD. Voiry, H. Yamaguchi, J. W. Li, R. Silva, D. C. B. Alves, T. Fujita, M. W. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850–855;
- 100bJ. Wang, J. Liu, B. Zhang, X. Ji, K. Xu, C. Chen, L. Miao, J. Jiang, Phys. Chem. Chem. Phys. 2017, 19, 10125–10132.
- 101
- 101aH. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P. C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz, Y. Cui, Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706;
- 101bH. Wang, Z. Lu, D. Kong, J. Sun, T. M. Hymel, Y. Cui, ACS Nano 2014, 8, 4940–4947.
- 102Y. Qu, H. Medina, S. W. Wang, Y. C. Wang, C. W. Chen, T. Y. Su, A. Manikandan, K. Wang, Y. C. Shih, J. W. Chang, Adv. Mater. 2016, 28, 9831–9838.
- 103
- 103aJ. V. Lauritsen, J. Kibsgaard, G. H. Olesen, P. G. Moses, B. Hinnemann, S. Helveg, J. K. Nørskov, B. S. Clausen, H. Topsøe, E. Lægsgaard, J. Catal. 2007, 249, 220–233;
- 103bX. Sun, J. Dai, Y. Guo, C. Wu, F. Hu, J. Zhao, X. Zeng, Y. Xie, Nanoscale 2014, 6, 8359–8367;
- 103cX. Ren, Q. Ma, H. Fan, L. Pang, Y. Zhang, Y. Yao, X. Ren, S. F. Liu, Chem. Commun. 2015, 51, 15997–16000;
- 103dJ. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. 2015, 8, 1594–1601;
- 103eG. Liu, A. W. Robertson, M. M.-J. Li, W. C. Kuo, M. T. Darby, M. H. Muhieddine, Y.-C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, S. C. E. Tsang Nat. Chem. 2017, 9, 810–816.
- 104X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. D. Lou, U. Paik, Adv. Mater. 2016, 28, 9006–9011.
- 105H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, Y. Cui, Nano Res. 2015, 8, 566–575.
- 106J. Deng, H. Li, S. Wang, D. Ding, M. Chen, C. Liu, Z. Tian, K. Novoselov, C. Ma, D. Deng, Nat. Commun. 2017, 8, 14430.
- 107
- 107aC. Zhang, W. Lv, Y. Tao, Q. H. Yang, Energy Environ. Sci. 2015, 8, 1390–1403;
- 107bJ. B. Goodenough, Energy Storage Mater. 2015, 1, 158–161.
- 108I. Roger, M. A. Shipman, M. D. Symes, Nat. Chem. Rev. 2017, 1, 0003.
- 109
- 109aQ. Ding, F. Meng, C. R. English, M. C. Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, S. Jin, J. Am. Chem. Soc. 2014, 136, 8504–8507;
- 109bX. L. Zheng, J. P. Song, T. Ling, Z. P. Hu, P. F. Yin, K. Davey, X. W. Du, S. Z. Qiao, Adv. Mater. 2016, 28, 4935–4942.
- 110J. Wan, S. D. Lacey, J. Dai, W. Bao, M. S. Fuhrer, L. Hu, Chem. Soc. Rev. 2016, 45, 6742–6765.
- 111
- 111aQ. Zhang, S. Tan, R. G. Mendes, Z. Sun, Y. Chen, X. Kong, Y. Xue, M. H. Rümmeli, X. Wu, S. Chen, L. Fu, Adv. Mater. 2016, 28, 2616–2623;
- 111bJ. Gao, L. Li, J. Tan, H. Sun, B. Li, J. C. Idrobo, C. V. Singh, T. M. Lu, N. Koratkar, Nano Lett. 2016, 16, 3780–3787;
- 111cM. Rahman, K. Davey, S. Z. Qiao, Adv. Funct. Mater. 2017, 27, 1606129.
Citing Literature
January 15, 2018
Pages 626-646