Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors
Correction(s) for this article
-
Corrigendum: Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors
- Anxiang Yin,
- Qiyuan He,
- Zhaoyang Lin,
- Liang Luo,
- Yuan Liu,
- Sen Yang,
- Hao Wu,
- Mengning Ding,
- Yu Huang,
- Xiangfeng Duan,
- Volume 56Issue 13Angewandte Chemie International Edition
- pages: 3414-3414
- First Published online: March 15, 2017
Dr. Anxiang Yin
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorDr. Qiyuan He
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorZhaoyang Lin
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorDr. Liang Luo
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorYuan Liu
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorSen Yang
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorHao Wu
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorDr. Mengning Ding
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorProf. Yu Huang
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
California Nanosystems Institute, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorCorresponding Author
Prof. Xiangfeng Duan
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
California Nanosystems Institute, University of California, Los Angeles, CA 90095 (USA)
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)Search for more papers by this authorDr. Anxiang Yin
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorDr. Qiyuan He
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorZhaoyang Lin
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorDr. Liang Luo
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorYuan Liu
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorSen Yang
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorHao Wu
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorDr. Mengning Ding
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorProf. Yu Huang
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (USA)
California Nanosystems Institute, University of California, Los Angeles, CA 90095 (USA)
Search for more papers by this authorCorresponding Author
Prof. Xiangfeng Duan
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)
California Nanosystems Institute, University of California, Los Angeles, CA 90095 (USA)
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (USA)Search for more papers by this authorGraphical Abstract
Abstract
Herein, we report the design and synthesis of plasmonic/non-linear optical (NLO) material core/shell nanostructures that can allow dynamic manipulation of light signals using an external electrical field and enable a new generation of nanoscale optical voltage sensors. We show that gold nanorods (Au NRs) can be synthesized with tunable plasmonic properties and function as the nucleation seeds for continued growth of a shell of NLO materials (such as polyaniline, PANI) with variable thickness. The formation of a PANI nanoshell allows dynamic modulation of the dielectric environment of the plasmonic Au NRs, and therefore the plasmonic resonance characteristics, by an external electrical field. The finite element simulation confirms that such modulation is originated from the field-induced modulation of the dielectric constant of the NLO shell. This approach is general, and the coating of the Au NRs with other NLO materials (such as barium titanate, BTO) is found to produce a similar effect. These findings can not only open a new pathway to active modulation of plasmonic resonance at the sub-wavelength scale but also enable the creation of a new generation of nanoscale optical voltage sensors (NOVS).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201508586_sm_miscellaneous_information.pdf740.2 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Lai, S. Link, N. J. Halas, Nat. Photonics 2007, 1, 641–648.
- 2J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, Nat. Mater. 2010, 9, 193–204.
- 3N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, Nat. Mater. 2011, 10, 631–636.
- 4C. H. Wu, A. B. Khanikaev, R. Adata, N. Arju, A. A. Yanik, H. Altug, G. Shvets, Nat. Mater. 2011, 11, 69–75.
- 5W. C. Tan, M. Hofmann, Y. P. Hsieh, M. L. Lu, Y. F. Chen, Nano Res. 2012, 5, 695–702.
- 6H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205–213.
- 7D. H. Wang, D. Y. Kin, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, A. J. Heeger, Angew. Chem. Int. Ed. 2011, 50, 5519–5523; Angew. Chem. 2011, 123, 5633–5637.
- 8S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911–921.
- 9F. Wang, C. H. Li, H. J. Chen, R. B. Jiang, L. D. Sun, Q. Li, J. F. Wang, C. H. Yan, J. Am. Chem. Soc. 2013, 135, 5588–5601.
- 10T. Kosako, Y. Kodoya, H. F. Hofmann, Nat. Photonics 2010, 4, 312–315.
- 11A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, Science 2010, 329, 930–933.
- 12S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, Y. N. Xia, Acc. Chem. Res. 2008, 41, 1587.
- 13H. J. Chen, L. Shao, Q. Li, J. F. Wang, Chem. Soc. Rev. 2013, 42, 2679–2724.
- 14Y. H. Sun, L. Jiang, L. B. Zhong, Y. Y. Jiang, X. D. Chen, Nano Res. 2015, 8, 406–417.
- 15T. Ming, L. Zhao, M. D. Xiao, J. F. Wang, Small 2010, 6, 2514–2519.
- 16Y. B. Zheng, B. Kiraly, S. Cheunkar, T. J. Huang, P. S. Weiss, Nano Lett. 2011, 11, 2061–2065.
- 17J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, R. F. Haglund, Jr., Appl. Phys. Lett. 2006, 88, 133115.
- 18W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, Q. F. Xu, Nano Lett. 2013, 13, 3698–3702.
- 19Y. R. Leroux, J. C. Lacroix, K. I. Chane-Ching, C. Fave, N. Felidj, G. Levi, J. Aubard, J. R. Krenn, A. Hohenau, J. Am. Chem. Soc. 2005, 127, 16022–16023.
- 20Y. Leroux, J. C. Larroix, C. Fave, G. Trippe, N. Felidj, J. Aubard, A. Hohenau, J. R. Krenn, ACS Nano 2008, 2, 728–732.
- 21V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, J. Am. Chem. Soc. 2010, 132, 10224–10226.
- 22P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. P. Huang, P. M. Alsing, J. M. Xu, Nano Lett. 2005, 5, 1978–1981.
- 23W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, Nano Lett. 2008, 8, 281–296.
- 24S. Khatua, W. S. Chang, P. Swanglap, J. Olson, S. Link, Nano Lett. 2011, 11, 3797–3802.
- 25H. Zhang, Y. J. Li, I. A. Ivanov, Y. Q. Qu, Y. Huang, X. F. Duan, Angew. Chem. Int. Ed. 2010, 49, 2865–2868; Angew. Chem. 2010, 122, 2927–2930.
- 26Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, X. F. Duan, Nat. Commun. 2011, 2, 579.
- 27Y. Q. Qu, R. Cheng, Q. Su, X. F. Duan, J. Am. Chem. Soc. 2011, 133, 16730–16733.
- 28H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, Nat. Photonics 2009, 3, 148–151.
- 29A. Kharkwal, M. Deepa, A. G. Joshi, A. K. Srivastava, ChemPhysChem 2011, 12, 1176–1188.
- 30M. Ozaki, J. Kato, S. Kawata, Science 2011, 332, 218–220.
- 31L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, J. Phys. Chem. C 2010, 114, 11127–11132.
- 32J. A. Osaheni, S. A. Jenekhe, H. Vanherzeele, J. S. Meth, Y. Sun, A. G. MacDiarmid, J. Phys. Chem. 1992, 96, 2830–2836.
- 33H. S. Nalwa, Adv. Mater. 1993, 5, 341–358.
- 34D. Li, J. X. Huang, R. B. Kaner, Acc. Chem. Res. 2009, 42, 135–145.
- 35N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater. 2001, 13, 1389–1393.
- 36B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957–1962.
- 37S. X. Xing, L. H. Tan, M. X. Yang, M. Pan, Y. B. Lv, Q. H. Tang, Y. H. Yang, H. Y. Chen, J. Mater. Chem. 2009, 19, 3286–3291.
- 38L. Cristofolini, M. P. Fontana, P. Camorani, T. Berzina, A. Nabok, Langmuir 2010, 26, 5829–5835.
- 39M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, H. A. Atwater, Nano Lett. 2008, 8, 4048–4052.
- 40M. J. Polking, M. G. Han, A. Yourdkhani, V. Petkov, C. F. Kisielowski, V. V. Volkov, Y. M. Zhu, G. Caruntu, A. P. Alivisatos, R. Ramesh, Nat. Mater. 2012, 11, 700–709.
- 41K. S. Lee, M. A. El-Sayed, J. Phys. Chem. B 2005, 109, 20331–20338.
- 42H. J. Chen, X. S. Kou, Z. Yang, W. H. Ni, J. F. Wang, Langmuir 2008, 24, 5233–5237.
- 43S. A. Empedocles, M. G. Bawendi, Science 1997, 278, 2114–2117.
- 44K. Park, Z. Deutsch, J. J. Li, D. Oron, S. Weiss, ACS Nano 2012, 6, 10013–10023.
- 45Sub-wavelength refers to a particle with dimensions less than the wavelength of administered light.