Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture)†
Corresponding Author
Prof. Dr. W. E. (William E.) Moerner
Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)Search for more papers by this authorCorresponding Author
Prof. Dr. W. E. (William E.) Moerner
Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)Search for more papers by this authorCopyright© The Nobel Foundation 2014. We thank the Nobel Foundation, Stockholm, for permission to print this lecture.
Graphical Abstract
In the early 90s, many fascinating physical effects were observed when ensemble averaging was removed to allow study of individual molecules. The imaging of single molecules as well as observations of spectral diffusion, optical switching, and the ability to select different single molecules in the same focal volume by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules.
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
References
- 1“Optical detection and spectroscopy of single molecules in a solid”: W. E. Moerner, L. Kador, Phys. Rev. Lett. 1989, 62, 2535–2538.
- 2“On/Off blinking and switching behavior of single molecules of green fluorescent protein”: R. M. Dickson, A. B. Cubitt, R. Y. Tsien, W. E. Moerner, Nature 1997, 388, 355–358.
- 3“Laser spectroscopy of trapped atomic ions”: W. M. Itano, J. C. Bergquist, D. J. Wineland, Science 1987, 237, 612.
- 4“Laser experiments with single atoms as A test of basic physics”: F. Diedrich, J. Krause, G. Rempe, M. O. Scully, H. Walther, IEEE J. Quantum Electron. 1988, 24, 1314.
- 5“Experiments with an isolated subatomic particle at rest”: H. Dehmelt, Rev. Mod. Phys. 1990, 62, 525–530.
- 6“Scanning tunneling microscopy-from birth to adolescence”: G. Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59, 615.
- 7“Atomic force microscope”: G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930–933.
- 8“Single-channel currents recorded from membrane of denervated frog muscle fibres”: E. Neher, B. Sakmann, Nature 1976, 260, 799–802.
- 9“Are there quantum jumps? part II”: E. R. J. A. Schrödinger, Br. J. Phil. Sci. 1952, 3, 233–242.
10.1093/bjps/III.11.233 Google Scholar
- 10aM. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford Univ. Press, London, 1999;
10.1093/oso/9780195129632.001.0001 Google Scholar
- 10b“Absorption, excitation, and emission spectroscopy of terrylene in p-terphenyl: Bulk measurements and single molecule studies”: S. Kummer, F. Kulzer, R. Kettner, T. Basché, C. Tietz, C. Glowatz, C. Kryschi, J. Chem. Phys. 1997, 107, 7673–7684.
- 11“Radiationless relaxation and optical dephasing of molecules excited by wide- and narrow-band lasers. II. pentacene in low-temperature mixed crystals”: T. E. Orlowski, A. H. Zewail, J. Chem. Phys. 1979, 70, 1390–1426.
- 12“Shapes of inhomogeneously broadened resonance lines in solids”: A. M. Stoneham, Rev. Mod. Phys. 1969, 41, 82.
- 13“The effect of fine structure appearance in laser-excited fluorescence spectra of organic compounds in solid solutions”: R. I. Personov, E. I. Al’Shits, L. A. Bykovskaya, Opt. Commun. 1972, 6, 169–173.
- 14“High-resolution spectroscopy of organic molecules in solids: From fluorescence line narrowing and hole burning to single molecule spectroscopy”: M. Orrit, J. Bernard, R. I. Personov, J. Phys. Chem. 1993, 97, 10256–10268.
- 15“Fluorescence transient and optical free induction decay spectroscopy of pentacene in mixed crystals at 2 K. determination of intersystem crossing and internal conversion rates”: H. de Vries, D. A. Wiersma, J. Chem. Phys. 1979, 70, 5807.
- 16“Coherent optical transient studies of dephasing and relaxation in electronic transitions of large molecules in the condensed phase”: D. A. Wiersma, Adv. Chem. Phys. 1981, 47, 421.
- 17“Dynamics in low temperature glasses: Theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling”: M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, M. D. Fayer, J. Chem. Phys. 1988, 88, 1564–1587.
- 18“Hole burning in the contour of a pure electronic line in a Shpol’skii system”: A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, JETP Lett. 1974, 20, 216.
- 19“Stable ”gap“ in absorption spectra of solid solutions of organic molecules by laser irradiation”: B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 1974, 12, 191–193.
- 20“Molecular electronics for frequency domain optical storage: Persistent spectral hole-burning – a review”: W. E. Moerner, J. Mol. Electron. 1985, 1, 55–71.
- 21W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Top. Curr. Phys. 44), Springer, Berlin, 1988.
10.1007/978-3-642-83290-1 Google Scholar
- 22“Photochemical hole burning: A spectroscopic study of relaxation processes in polymers and glasses”: J. Friedrich, D. Haarer, Angew. Chem. Int. Ed. Engl. 1984, 23, 113–140; Angew. Chem. 1984, 96, 96–123.
- 23“Mechanisms of non-photochemical hole-burning in organic glasses”: J. M. Hayes, G. J. Small, Chem. Phys. Lett. 1978, 54, 435–438.
- 24“Non-photochemical hole burning and impurity site relaxation processes in organic glasses”: J. M. Hayes, G. J. Small, Chem. Phys. 1978, 27, 151–157.
- 25“From spectral holeburning memory to spatial-spectral microwave signal processing”: W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, R. K. Mohan, T. Sharpe, C. R. Stiffler, A. S. Traxinger, A. J. Woidtke, Laser Phys. 2014, 24, 094002.
- 26“Can single-photon processes provide useful materials for frequency-domain optical storage?”: W. E. Moerner, M. D. Levenson, J. Opt. Soc. Am. B 1985, 2, 915–924.
- 27“Statistical fine structure in inhomogeneously broadened absorption lines”: W. E. Moerner, T. P. Carter, Phys. Rev. Lett. 1987, 59, 2705.
- 28“Statistical fine structure in the inhomogeneously broadened electronic origin of pentacene in p-terphenyl”: T. P. Carter, M. Manavi, W. E. Moerner, J. Chem. Phys. 1988, 89, 1768.
- 29“Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions”: G. C. Bjorklund, Opt. Lett. 1980, 5, 15.
- 30“Pseudo-stark effect and FM/Stark double-modulation spectroscopy for the detection of statistical fine structure in alexandrite”: T. P. Carter, D. E. Horne, W. E. Moerner, Chem. Phys. Lett. 1988, 151, 102.
- 31“Frequency modulation (FM) spectroscopy”: G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B 1983, 32, 145.
- 32“Optical detection and probing of single dopant molecules of pentacene in a p-terphenyl host crystal by means of absorption spectroscopy”: L. Kador, D. E. Horne, W. E. Moerner, J. Phys. Chem. 1990, 94, 1237–1248.
- 33“Residual amplitude modulation in laser electro-optic phase modulation”: E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, J. Opt. Soc. Am. B 1985, 2, 1320.
- 34“Absorption spectroscopy on single molecules in solids”: L. Kador, T. Latychevskaia, A. Renn, U. P. Wild, J. Chem. Phys. 1999, 111, 8755–8758.
- 35“Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal”: M. Orrit, J. Bernard, Phys. Rev. Lett. 1990, 65, 2716–2719.
- 36“Spectroscopy of K2 using laser-induced fluorescence”: W. J. Tango, J. K. Link, R. N. Zare, J. Chem. Phys. 1968, 49, 4264–4268.
- 37“Stark effect on single molecules in a polymer matrix”: M. Orrit, J. Bernard, A. Zumbusch, R. I. Personov, Chem. Phys. Lett. 1992, 196, 595.
- 38“Probing individual two-level systems in a polymer by correlation of single-molecule fluorescence”: A. Zumbusch, L. Fleury, R. Brown, J. Bernard, M. Orrit, Phys. Rev. Lett. 1993, 70, 3584–3587.
- 39“Single molecule polarization spectroscopy: Pentacene in p-terphenyl”: F. Güttler, M. Croci, A. Renn, U. P. Wild, Chem. Phys. 1996, 211, 421–430.
- 40 Single-Molecule Optical Detection, Imaging, and Spectroscopy (Eds.: ), Verlag Chemie, Weinheim, 1997.
- 41“Optical spectroscopy of single impurity molecules in solids”: W. E. Moerner, T. Basché, Angew. Chem. Int. Ed. Engl. 1993, 32, 457; Angew. Chem. 1993, 105, 537.
- 42“Single-molecule spectroscopy and quantum optics in solids”: W. E. Moerner, R. M. Dickson, D. J. Norris, Adv. At. Mol. Opt. Phys. 1998, 38, 193–236.
- 43“Structure and dynamics in solids as probed by optical spectroscopy”: J. L. Skinner, W. E. Moerner, J. Phys. Chem. 1996, 100, 13251–13262.
- 44“High-resolution optical spectroscopy of single molecules in solids”: W. E. Moerner, Acc. Chem. Res. 1996, 29, 563.
- 45“Examining nanoenvironments in solids on the scale of a single, isolated molecule”: W. E. Moerner, Science 1994, 265, 46–53.
- 46“Optical spectroscopy of single molecules in solids”: M. Orrit, J. Bernard, R. Brown, B. Lounis, Prog. Opt. 1996, 35, 61–144.
- 47“Single-molecule spectroscopy”: T. Plakhotnik, E. A. Donley, U. P. Wild, Annu. Rev. Phys. Chem. 1997, 48, 181–212.
- 48“Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal”: W. P. Ambrose, W. E. Moerner, Nature 1991, 349, 225–227.
- 49“Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation”: W. P. Ambrose, T. Basché, W. E. Moerner, J. Chem. Phys. 1991, 95, 7150–7163.
- 50“Photon antibunching in the fluorescence of a single dye molecule trapped in a solid”: T. Basché, W. E. Moerner, M. Orrit, H. Talon, Phys. Rev. Lett. 1992, 69, 1516–1519.
- 51“Dispersed fluorescence spectra of single molecules of pentacene in p-terphenyl”: P. Tchénio, A. B. Myers, W. E. Moerner, J. Phys. Chem. 1993, 97, 2491.
- 52“Vibrational analysis of dispersed fluorescence from single molecules of terrylene in polyethylene”: P. Tchénio, A. B. Myers, W. E. Moerner, Chem. Phys. Lett. 1993, 213, 325.
- 53“Vibronic spectroscopy of individual molecules in solids”: A. B. Myers, P. Tchénio, M. Zgierski, W. E. Moerner, J. Phys. Chem. 1994, 98, 10377.
- 54“Magnetic resonance of a single molecular spin”: J. Köhler, J. A. J. M. Disselhorst, M. C. J. M. Donckers, E. J. J. Groenen, J. Schmidt, W. E. Moerner, Nature 1993, 363, 242–244.
- 55“Near-field optical spectroscopy of individual molecules in solids”: W. E. Moerner, T. Plakhotnik, T. Irngartinger, U. P. Wild, D. Pohl, B. Hecht, Phys. Rev. Lett. 1994, 73, 2764.
- 56“Comment on single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal”: W. E. Moerner, W. P. Ambrose, Phys. Rev. Lett. 1991, 66, 1376.
- 57“Intersystem crossing from singlet states of molecular dimers and monomers in mixed molecular crystals: Picosecond stimulated photon echo experiments”: F. G. Patterson, H. W. H. Lee, W. L. Wilson, M. D. Fayer, Chem. Phys. 1984, 84, 51.
- 58“Fluorescence microscopy of single molecules”: F. Güttler, T. Irngartinger, T. Plakhotnik, A. Renn, U. P. Wild, Chem. Phys. Lett. 1994, 217, 393.
- 59Structural relaxation processes in polymers and glasses as studied by high resolution optical spectroscopy: J. Friedrich, D. Haarer, in Optical Spectroscopy of Glasses (Ed.: ), Reidel, Dordrecht, 1986, p. 149.
10.1007/978-94-009-4650-7_4 Google Scholar
- 60“Spectral diffusion of single molecule fluorescence: A probe of low-frequency localized excitations in disordered crystals”: P. D. Reilly, J. L. Skinner, Phys. Rev. Lett. 1993, 71, 4257–4260.
- 61“Spectral diffusion of individual pentacene molecules in p-terphenyl crystal: Stochastic theoretical model and analysis of experimental data”: P. D. Reilly, J. L. Skinner, J. Chem. Phys. 1995, 102, 1540.
- 62“Theory of single-molecule optical line-shape distributions in low-temperature glasses”: E. Geva, J. L. Skinner, J. Phys. Chem. B 1997, 101, 8920–8932.
- 63“Single-molecule spectroscopy in Shpol′skii matrices”: T. Plakhotnik, W. E. Moerner, T. Irngartinger, U. P. Wild, Chimia 1994, 48, 31.
- 64“Optical modification of a single impurity molecule in a solid”: T. Basché, W. E. Moerner, Nature 1992, 355, 335–337.
- 65“Optical spectra and kinetics of single impurity molecules in a polymer: Spectral diffusion and persistent spectral hole-burning”: T. Basché, W. P. Ambrose, W. E. Moerner, J. Opt. Soc. Am. B 1992, 9, 829.
- 66“Optical studies of single terrylene molecules in polyethylene”: P. Tchénio, A. B. Myers, W. E. Moerner, J. Lumin. 1993, 56, 1.
- 67“Optical probing of single molecules of terrylene in a shpolskii matrix – A two-state single-molecule switch”: W. E. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm, U. P. Wild, J. Phys. Chem. 1994, 98, 7382–7389.
- 68“Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor”: T. Ha, T. Enderle, D. F. Ogletree, D. S. Chemla, P. R. Selvin, S. Weiss, Proc. Natl. Acad. Sci. USA 1996, 93, 6264–6268.
- 69Nanophotonics and single molecules: W. E. Moerner, P. J. Schuck, D. P. Fromm, A. Kinkhabwala, S. J. Lord, S. Y. Nishimura, K. A. Willets, A. Sundaramurthy, G. S. Kino, M. He, Z. Lu, R. J. Twieg, in Single Molecules and Nanotechnology (Eds.: ), Springer, Berlin, 2008, pp. 1–23.
10.1007/978-3-540-73924-1_1 Google Scholar
- 70“Large single-molecule fluorescence enhancements produced by a gold bowtie nanoantenna”: A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, W. E. Moerner, Nat. Photonics 2009, 3, 654.
- 71“Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy”: D. Magde, E. Elson, W. W. Webb, Phys. Rev. Lett. 1972, 29, 705.
- 72“Fluorescence correlation spectroscopy. I. conceptual basis and theory”: E. L. Elson, D. Magde, Biopolymers 1974, 13, 1–27.
- 73“Fluorescence correlation spectroscopy. II. an experimental realization”: D. L. Magde, E. L. Elson, W. W. Webb, Biopolymers 1974, 13, 29–61.
- 74“Fluorescence correlation spectroscopy. III. uniform translation and laminar flow”: D. Magde, W. W. Webb, E. L. Elson, Biopolymers 1978, 17, 361–367.
- 75“Rotational brownian motion and fluorescence intensify fluctuations”: M. Ehrenberg, R. Rigler, Chem. Phys. 1974, 4, 390–401.
- 76“Fluorescence correlation spectroscopy as a probe of molecular dynamics”: S. R. Aragón, R. Pecora, J. Chem. Phys. 1976, 64, 1791–1803.
- 77R. Rigler, J. Widengren in Ultrasensistve Detection of Single Molecules by Fluorescence Correlation Spectroscopy, Bioscience Third Conference (Eds.: ), Lund University Press, Lund, Sweden, 1990, pp. 180–183.
- 78“Single-molecule fluorescence detection - auto-correlation criterion and experimental realization with phycoerythrin”: K. Peck, L. Stryer, A. N. Glazer, R. A. Mathies, Proc. Natl. Acad. Sci. USA 1989, 86, 4087–4091.
- 79“Detection of single fluorescent molecules”: E. Brooks Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, S. A. Soper, Chem. Phys. Lett. 1990, 174, 553–557.
- 80“Probing individual molecules with confocal fluorescence microscopy”: S. Nie, D. T. Chiu, R. N. Zare, Science 1994, 266, 1018–1021.
- 81“Optical microscopic observation of single small molecules”: T. Hirschfeld, Appl. Opt. 1976, 15, 2965–2966.
- 82“Single molecules observed by near-field scanning optical microscopy”: E. Betzig, R. J. Chichester, Science 1993, 262, 1422–1425.
- 83“Single-molecule detection and photochemistry on a surface using near-field optical-excitation”: W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, Phys. Rev. Lett. 1994, 72, 160–163.
- 84“Probing single-molecule dynamics”: X. S. Xie, R. C. Dunn, Science 1994, 265, 361–364.
- 85“Imaging and time-resolved spectroscopy of single molecules at an interface”: J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, Science 1996, 272, 255–258.
- 86“Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution”: T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, Nature 1995, 374, 555–559.
- 87“Imaging of single molecule diffusion”: T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, H. Schindler, Proc. Natl. Acad. Sci. USA 1996, 93, 2926–2929.
- 88 Fluorescence Correlation Spectroscopy (Eds.: ), Springer, Berlin, 2001.
- 89“Fluorescence correlation spectroscopy and its potential for intracellular applications”: P. Schwille, Cell Biochem. Biophys. 2001, 34, 383–408.
- 90“Biological and chemical applications of fluorescence correlation spectroscopy: A review”: S. T. Hess, S. Huang, A. A. Heikal, W. W. Webb, Biochemistry 2002, 41, 697–705.
- 91“Fluorescence spectroscopy of single biomolecules”: S. Weiss, Science 1999, 283, 1676–1683.
- 92“Illuminating single molecules in condensed matter”: W. E. Moerner, M. Orrit, Science 1999, 283, 1670–1676.
- 93Single-molecule optical spectroscopy and imaging: From early steps to recent advances: W. E. Moerner, in Single Molecule Spectroscopy in Chemistry, Physics and Biology: Nobel Symposium 138 Proceedings (Eds.: ), Springer, Berlin, 2009, pp. 25–60.
- 94 Single Molecule Spectroscopy: Nobel Conference Lectures (Eds.: ), Springer, Berlin, 2001.
- 95 Single Molecule Spectroscopy in Chemistry, Physics and Biology: Nobel Symposium 138 Proceedings (Eds.: ), Springer, Berlin, 2010.
- 96C. Zander, J. Enderlein, R. A. Keller, Single-Molecule Detection in Solution: Methods and Applications, Wiley-VCH, Weinheim, 2002.
10.1002/3527600809 Google Scholar
- 97C. Gell, D. J. Brockwell, A. Smith, Handbook of Single Molecule Fluorescence Spectroscopy, Oxford Univ. Press, Oxford, 2006.
- 98 Single-Molecule Techniques: A Laboratory Manual (Eds.: ), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2008.
- 99 Handbook of Single-Molecule Biophysics (Eds.: ), Springer, New York, 2009.
- 100“Translational diffusion of individual class II MHC membrane proteins in cells”: M. Vrljic, S. Y. Nishimura, S. Brasselet, W. E. Moerner, H. M. McConnell, Biophys. J. 2002, 83, 2681–2692.
- 101“Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane”: M. Vrljic, S. Y. Nishimura, W. E. Moerner, H. M. McConnell, Biophys. J. 2005, 88, 334–347.
- 102“Cholesterol depletion induces solid-like regions in the plasma membrane”: S. Nishimura, M. Vrljic, L. O. Klein, H. M. McConnell, W. E. Moerner, Biophys. J. 2006, 90, 927–938. PMCID: PMC1367117.
- 103“Single-molecule tracking”: M. Vrljic, S. Y. Nishimura, W. E. Moerner, Methods Mol. Biol. 2007, 398, 193–219.
- 104“Single-molecule nanoprobes explore defects in spin-grown crystals”: C. A. Werley, W. E. Moerner, J. Phys. Chem. B 2006, 110, 18939–18944.
- 105“Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis”: R. M. Dickson, D. J. Norris, W. E. Moerner, Phys. Rev. Lett. 1998, 81, 5322–5325.
- 106“Generating and exploiting polarity in bacteria”: L. Shapiro, H. McAdams, R. Losick, Science 2002, 298, 1942–1946.
- 107“Cell cycle regulation in Caulobacter: Location, location, location”: E. D. Goley, A. A. Iniesta, L. Shapiro, J. Cell Sci. 2007, 120, 3501–3507.
- 108“Single molecules of the bacterial actin MreB undergo directed treadmilling motion in caulobacter crescentus”: S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, W. E. Moerner, Proc. Natl. Acad. Sci. USA 2006, 103, 10929–10934.
- 109“The bacterial actin MreB rotates, and rotation depends on cell-wall assembly”: S. van Teeffelen, S. Wang, L. Furchtgott, K. C. Huang, N. S. Wingreen, J. W. Shaevitz, Z. Gitai, Proc. Natl. Acad. Sci. USA 2011, 108, 15822–15827.
- 110“Contributions to the theory of the microscope and microscopic detection”: E. Abbe, Arch. Mikroskop. Anat. 1873, 9, 413–468.
10.1007/BF02956173 Google Scholar
- 111“Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy”: S. W. Hell, J. Wichmann, Opt. Lett. 1994, 19, 780–782.
- 112“Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy”: M. G. L. Gustafsson, J. Microsc. 2000, 198, 82–87.
- 113“The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging”: M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, W. E. Moerner, ChemPhysChem 2014, 15, 587–599.
- 114“Imaging intracellular fluorescent proteins at nanometer resolution”: E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642–1645.
- 115“Precise nanometer localization analysis for individual fluorescent probes”: R. E. Thompson, D. R. Larson, W. W. Webb, Biophys. J. 2002, 82, 2775–2783.
- 116“Using photon statistics to boost microscopy resolution”: X. Michalet, S. Weiss, Proc. Natl. Acad. Sci. USA 2006, 103, 4797–4798.
- 117“Optimized localization analysis for single-molecule tracking and super-resolution microscopy”: K. I. Mortensen, L. S. Churchman, J. A. Spudich, H. Flyvbjerg, Nat. Methods 2010, 7, 377–381.
- 118“Diffusion of low density lipoprotein-receptor complex on human fibroblasts”: L. S. Barak, W. W. Webb, J. Cell Biol. 1982, 95, 846–852.
- 119“Tracking kinesin-driven movements with nanometre-scale precision”: J. Gelles, B. J. Schnapp, M. P. Sheetz, Nature 1988, 331, 450–453.
- 120“Real-time single-molecule imaging of the infection pathway of an adeno-associated virus”: G. Seisenberger, M. U. Ried, T. Endress, H. Buning, M. Hallek, C. Braeuchle, Science 2001, 294, 1929–1932.
- 121“Position measurement with a resolution and noise-limited instrument”: N. Bobroff, Rev. Sci. Instrum. 1986, 57, 1152–1157.
- 122W. Heisenberg, The Physical Principles of Quantum Theory, University of Chicago Press, Chicago, 1930, p. 22.
- 123“Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization”: A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, P. R. Selvin, Science 2003, 300, 2061–2065.
- 124“The green fluorescent protein”: R. Y. Tsien, Annu. Rev. Biochem. 1998, 67, 509–544.
- 125“Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels”: R. M. Dickson, D. J. Norris, Y. L. Tzeng, W. E. Moerner, Science 1996, 274, 966–969.
- 126“Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer”: M. Chattoraj, B. A. King, G. U. Bublitz, S. G. Boxer, Proc. Natl. Acad. Sci. USA 1996, 93, 8362–8367.
- 127“An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein”: R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, A. Miyawaki, Proc. Natl. Acad. Sci. USA 2002, 99, 12651–12656.
- 128“A photoactivatable GFP for selective photolabeling of proteins and cells”: G. H. Patterson, J. A. Lippincott-Schwartz, Science 2002, 297, 1873–1877.
- 129“EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion”: J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Röcker, A. Salih, K. Spindler, G. U. Nienhaus, Proc. Natl. Acad. Sci. USA 2004, 101, 15905–15910.
- 130“Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting”: R. Ando, H. Mizuno, A. Miyawaki, Science 2004, 306, 1370–1373.
- 131“Proposed method for molecular optical imaging”: E. Betzig, Opt. Lett. 1995, 20, 237–239.
- 132“3-dimensional super-resolution by spectrally selective imaging”: A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, Chem. Phys. Lett. 1998, 292, 183–187.
- 133a“Far-field fluorescence microscopy beyond the diffraction limit”: A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, J. Opt. Soc. Am. A 1999, 16, 909–915;
- 133b“Ultrahigh-resolution multicolor colocalization of single fluorescent probes”: T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, Proc. Natl. Acad. Sci. USA 2000, 97, 9461–9466 .
- 134“High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy”: M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, M. Sauer, Anal. Chem. 2002, 74, 3511–3517.
- 135“Single-molecule high-resolution imaging with photobleaching”: M. P. Gordon, T. Ha, P. R. Selvin, Proc. Natl. Acad. Sci. USA 2004, 101, 6462–6465.
- 136“Nanometer-localized multiple single-molecule fluorescence microscopy”: X. Qu, D. Wu, L. Mets, N. F. Scherer, Proc. Natl. Acad. Sci. USA 2004, 101, 11298–11303.
- 137“Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time”: L. S. Churchman, Z. Oekten, R. S. Rock, J. F. Dawson, J. A. Spudich, Proc. Natl. Acad. Sci. USA 2005, 102, 1419–1423.
- 138“Superresolution by localization of quantum dots using blinking statistics”: K. A. Lidke, B. Rieger, T. M. Jovin, R. Heintzmann, Opt. Express 2005, 13, 7052–7062.
- 139“New directions in single-molecule imaging and analysis”: W. E. Moerner, Proc. Natl. Acad. Sci. USA 2007, 104, 12596–12602.
- 140“A non-gaussian distribution quantifies distances measured with fluorescence localization techniques”: L. Stirling Churchman, H. Flyvbjerg, J. A. Spudich, Biophys. J. 2006, 90, 668–671.
- 141“Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)”: M. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793–796.
- 142“Ultra-high resolution imaging by fluorescence photoactivation localization microscopy”: S. T. Hess, T. P. K. Girirajan, M. D. Mason, Biophys. J. 2006, 91, 4258–4272.
- 143“Wide-field subdiffraction imaging by accumulated binding of diffusing probes”: A. Sharonov, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2006, 103, 18911–18916.
- 144“Controlled biomolecular collisions allow sub-diffraction limited microscopy of lipid vesicles”: E. Mei, F. Gao, R. M. Hochstrasser, Phys. Chem. Chem. Phys. 2006, 8, 2077–2082.
- 145“Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes”: M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem. Int. Ed. 2008, 47, 6172–6176; Angew. Chem. 2008, 120, 6266–6271.
- 146“Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength”: I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. von Middendorf, J. Foelling, S. Jakobs, A. Schoenle, S. W. Hell, C. Eggeling, Biophys. J. 2010, 99, 2686–2694.
- 147“Resolving single-molecule assembled patterns with superresolution blink-microscopy”: T. Cordes, M. Strackharn, S. W. Stahl, W. Summerer, C. Steinhauer, C. Forthmann, E. M. Puchner, J. Vogelsang, H. E. Gaub, P. Tinnefeld, Nano Lett. 2010, 10, 645–651.
- 148“SPDM: Light microscopy with single-molecule resolution at the nanoscale”: P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Mueller, M. Hausmann, C. Cremer, Appl. Phys. B 2008, 93, 1–12.
- 149“Super-resolution imaging in live caulobacter crescentus cells using photoswitchable EYFP: J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, W. E. Moerner, Nat. Methods 2008, 5, 947–949.
- 150“Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores”: H. D. Lee, S. J. Lord, S. Iwanaga, K. Zhan, H. Xie, J. C. Williams, H. Wang, G. R. Bowman, E. D. Goley, L. Shapiro, R. J. Twieg, J. Rao, W. E. Moerner, J. Am. Chem. Soc. 2010, 132, 15099–15101.
- 151“Enzymatic activation of nitro-aryl fluorogens in live bacterial cells for enzymatic turnover-activated localization microscopy”: M. K. Lee, J. Williams, R. J. Twieg, J. Rao, W. E. Moerner, Chem. Sci. 2013, 4, 220–225.
- 152“Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms”: F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, J. Bewersdorf, Nat. Methods 2013, 10, 653–658.
- 153“Breaking the diffraction barrier: Super-resolution imaging of cells”: B. Huang, H. Babcock, X. Zhuang, Cell 2010, 143, 1047–1058.
- 154“Extending microscopic resolution with single-molecule imaging and active control”: M. A. Thompson, M. D. Lew, W. E. Moerner, Annu. Rev. Biophys. 2012, 41, 321–342.
- 155“Molecules and methods for super-resolution imaging”: M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, W. E. Moerner, Methods Enzymol. 2010, 475, 27–59.
- 156“Single-molecule and superresolution imaging in live bacteria cells”: J. S. Biteen, W. E. Moerner, Cold Spring Harbor Perspect. Biol. 2010, 2, a 000448.
- 157Springer Series on Fluorescence: M. D. Lew, S. F. Lee, M. A. Thompson, H. D. Lee, W. E. Moerner in Single-Molecule Photocontrol and Nanoscopy, Springer, Berlin, Heidelberg, 2012, pp. 1–24.
- 158“Microscopy beyond the diffraction limit using actively controlled single molecules”: W. E. Moerner, J. Microsc. 2012, 246, 213–220.
- 159“Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D”: A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, W. E. Moerner, Nano Lett. 2013, 13, 987–993.
- 160“Super-resolution fluorescence imaging with single molecules”: S. J. Sahl, W. E. Moerner, Curr. Opin. Struct. Biol. 2013, 23, 778–787.
- 161“Super-resolution microscopy approaches for live cell imaging”: A. Godin, B. Lounis, L. Cognet, Biophys. J. 2014, 107, 1777–1784.
- 162“The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag”: M. T. Swulius, G. J. Jensen, J. Bacteriol. 2012, 194, 6382–6386.
- 163“A spindle-like apparatus guides bacterial chromosome segregation”: J. L. Ptacin, S. F. Lee, E. C. Garner, E. Toro, M. Eckart, L. R. Comolli, W. E. Moerner, L. Shapiro, Nat. Cell Biol. 2010, 12, 791–798.
- 164“Super-resolution imaging of the nucleoid-associated protein HU in caulobacter crescentus”: S. F. Lee, M. A. Thompson, M. A. Schwartz, L. Shapiro, W. E. Moerner, Biophys. J. 2011, 100, L31–L33.
- 165“Superresolution microscopy for microbiology”: C. Coltharp, J. Xiao, Cell. Microbiol. 2012, 14, 1808–1818.
- 166“Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging”: A. Gahlmann, W. E. Moerner, Nat. Rev. Microbiol. 2014, 12, 9–22.
- 167“Single-molecule super-resolution imaging in bacteria”: D. I. Cattoni, J. B. Fiche, M. Noellmann, Curr. Opin. Microbiol. 2012, 15, 758–763.
- 168“Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit”: A. E. Ondrus, H. D. Lee, S. Iwanaga, W. H. Parsons, B. M. Andresen, W. E. Moerner, J. Du Bois, Chem. Biol. 2012, 19, 902–912.
- 169“Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and atomic force microscopy”: W. C. Duim, B. Chen, J. Frydman, W. E. Moerner, ChemPhysChem 2011, 12, 2387–2390.
- 170W. C. Duim, “Single-molecule fluorescence and super-resolution imaging of Huntington’s disease protein aggregates”, Dissertation, Stanford, CA, Stanford University, 2012.
- 171“Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species”: S. J. Sahl, L. E. Weiss, W. C. Duim, J. Frydman, W. E. Moerner, Sci. Rep. 2012, 2, 1–7.
- 172“Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy”: M. K. Lee, P. Rai, J. Williams, R. J. Twieg, W. E. Moerner, J. Am. Chem. Soc. 2014, 136, 14003–14006.
- 173“Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy”: B. Huang, W. Wang, M. Bates, X. Zhuang, Science 2008, 319, 810–813.
- 174“High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells”: S. Ram, P. Prabhat, J. Chao, E. S. Ward, R. J. Ober, Biophys. J. 2008, 95, 6025–6043.
- 175“Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples”: M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, J. Bewersdorf, Nat. Methods 2008, 5, 527–529.
- 176“Extending single-molecule microscopy using optical Fourier processing”: A. S. Backer, W. E. Moerner, J. Phys. Chem. B 2014, 118, 8313–8329.
- 177“Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function”: S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, Proc. Natl. Acad. Sci. USA 2009, 106, 2995–2999.
- 178“Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane”: M. Badieirostami, M. D. Lew, M. A. Thompson, W. E. Moerner, Appl. Phys. Lett. 2010, 97, 161103.
- 179“Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus”: M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, W. E. Moerner, Proc. Natl. Acad. Sci. USA 2011, 108, E 1102–E1110.
- 180“Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects”: M. D. Lew, S. F. Lee, M. Badieirostami, W. E. Moerner, Opt. Lett. 2011, 36, 202–204.
- 181“A bisected pupil for studying single-molecule orientational dynamics and its application to 3D super-resolution microscopy”: A. S. Backer, M. P. Backlund, A. R. Diezmann, S. J. Sahl, W. E. Moerner, Appl. Phys. Lett. 2014, 104, 193701.
- 182“Optimal point spread function design for 3D imaging”: Y. Shechtman, S. J. Sahl, A. S. Backer, W. E. Moerner, Phys. Rev. Lett. 2014, 113, 133902.
- 183“Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons”: K. Xu, G. Zhong, X. Zhuang, Science 2013, 339, 452–456.
- 184“Tracking single molecules at work in living cells”: A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, T. K. Fujiwara, Nat. Chem. Biol. 2014, 10, 524.
- 185“A practical guide to single-molecule FRET”: R. Roy, S. Hohng, T. Ha, Nat. Methods 2008, 5, 507–516.
- 186“FRET in cell biology: Still shining in the age of super-resolution?”: H. E. Grecco, P. J. Verveer, ChemPhysChem 2011, 12, 484–490.
- 187“Probing single biomolecules in solution using the anti-brownian electrokinetic (ABEL) trap”: Q. Wang, R. H. Goldsmith, Y. Jiang, S. D. Bockenhauer, W. E. Moerner, Acc. Chem. Res. 2012, 45, 1955–1964.
- 188“Single-molecule spectroscopy of photosynthetic proteins in solution: Exploration of structure–function relationships”: G. S. Schlau-Cohen, S. Bockenhauer, Q. Wang, W. E. Moerner, Chem. Sci. 2014, 5, 2933–2939.
- 189“Enzyme kinetics, past and present”: X. S. Xie, Science 2013, 342, 1457–1459.