Dendrimeric siRNA for Efficient Gene Silencing†
Dr. Cheol Am Hong
Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Search for more papers by this authorDr. Ahmed A. Eltoukhy
Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Search for more papers by this authorProf. Hyukjin Lee
Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul (Republic of Korea)
Search for more papers by this authorProf. Robert Langer
Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Search for more papers by this authorCorresponding Author
Prof. Daniel G. Anderson
Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Daniel G. Anderson, Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Yoon Sung Nam, Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Yoon Sung Nam
Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Daniel G. Anderson, Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Yoon Sung Nam, Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Search for more papers by this authorDr. Cheol Am Hong
Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Search for more papers by this authorDr. Ahmed A. Eltoukhy
Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Search for more papers by this authorProf. Hyukjin Lee
Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul (Republic of Korea)
Search for more papers by this authorProf. Robert Langer
Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Search for more papers by this authorCorresponding Author
Prof. Daniel G. Anderson
Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Daniel G. Anderson, Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Yoon Sung Nam, Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Yoon Sung Nam
Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Daniel G. Anderson, Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
Yoon Sung Nam, Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
Search for more papers by this authorThis research was supported by Nano⋅Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012M3A7B4049802).
Graphical Abstract
Self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers can be complexed with a low-molecular-weight cationic polymer (PBAE) to generate stable nanostructures (ca. 160 nm diameter) by electrostatic interactions. Condensation and gene silencing efficiencies increase with increased generations of siRNA dendrimers owing to high charge density and structural flexibility.
Abstract
Programmable molecular self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers of siRNA can be effectively complexed with a low-molecular-weight, cationic polymer (poly(β-amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201412493_sm_miscellaneous_information.pdf518.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Castanotto, J. J. Rossi, Nature 2009, 457, 426–433;
- 1bR. Kanasty, J. R. Dorkin, A. Vegas, D, Anderson, Nat. Mater. 2013, 12, 967–977;
- 1cS. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Nature 2001, 411, 494–498.
- 2
- 2aR. L. Kanasty, K. A. Whitehead, A. J. Vegas, D. G. Anderson, Mol. Ther. 2012, 20, 513–524;
- 2bM. Dominska, D. M. Dykxhoorn, J. Cell Sci. 2010, 123, 1183–1189.
- 3
- 3aC. A. Hong, J. S. Kim, S. H. Lee, W. H. Kong, T. G. Park, H. Mok, Y. S. Nam, Adv. Funct. Mater. 2013, 23, 316–322;
- 3bJ. Yang, W. Hendricks, G. Liu, J. M. McCaffery, K. W. Kinzler, D. L. Huso, B. Vogelstein, S. Zhou, Proc. Natl. Acad. Sci. USA 2013, 110, 14717–14722.
- 4
- 4aM. Ikonen, L. Murtomäki, K. Kontturi, Colloids Surf. B 2008, 66, 77–83;
- 4bM. X. Tang, F. C. Szoka, Gene Ther. 1997, 4, 823–832.
- 5
- 5aC. Scholz, E. Wagner, J. Controlled Release 2012, 161, 554–565;
- 5bP. Kebbekus, D. E. Draper, P. Hagerman, Biochemistry 1995, 34, 4354–4357;
- 5cP. J. Hagerman, Biopolymers 1981, 20, 1503–1535;
- 5dP. J. Hagerman, Annu Rev. Biophys. Biophys. Chem. 1988, 17, 265–286.
- 6
- 6aS. J. Lee, S. Son, J. Y. Yhee, K. Choi, I. C. Kwon, S. H. Kim, K. Kim, Biotechnol. Adv. 2013, 31, 491–450;
- 6bS. H. Lee, B. H. Chung, T. G. Park, Y. S. Nam, H. Mok, Acc. Chem. Res. 2012, 45, 1014–1025.
- 7
- 7aH. Mok, S. H. Lee, J. W. Park, T. G. Park, Nat. Mater. 2010, 9, 272–278;
- 7bC. A. Hong, S. H. Lee, J. S. Kim, J. W. Park, K. H. Bae, H. Mok, T. G. Park, H. Lee, J. Am. Chem. Soc. 2011, 133, 13914–13917;
- 7cJ. B. Lee, J. Hong, D. K. Bonner, Z. Poon, P. T. Hammond, Nat. Mater. 2012, 11, 316–322.
- 8
- 8aD. Lynn, D. Anderson, D. Putnam, R. Langer, J. Am. Chem. Soc. 2001, 123, 8155–8156;
- 8bD. G. Anderson, D. M. Lynn, R. Langer, Angew. Chem. Int. Ed. 2003, 42, 3153–3158; Angew. Chem. 2003, 115, 3261–3266;
- 8cD. G. Anderson, A. Akinc, N. Hossain, R. Langer, Mol. Ther. 2005, 11, 426–438.
- 9
- 9aS. Y. Tzeng, B. P. Hung, W. L. Grayson, J. J. Green, Biomaterials 2012, 33, 8142–8151;
- 9bK. L. Kozielski, S. Y. Tzenga, J. J. Green, Chem. Commun. 2013, 49, 5319–5321.
- 10
- 10aM. Keeney, S. Ong, A. Padilla, Z. Yao, S. Goodman, J. C. Wu, F. Yang, ACS Nano 2013, 7, 7241–7250;
- 10bJ. J. Green, G. T. Zugates, R. Langer, D. G. Anderson, Methods Mol. Biol. 2009, 480, 53–63;
- 10cJ. J. Green, R. Langer, D. G. Anderson, Acc. Chem. Res. 2008, 41, 749–759;
- 10dA. A. Eltoukhy, D. J. Siegwart, C. A. Alabi, J. S. Rajan, R. Langer, D. G. Anderson, Biomaterials 2012, 33, 3594–3603.
- 11
- 11aD. Jere, C. X. Xu, R. Arote, C. H. Yun, M. H. Cho, C. S. Cho, Biomaterials 2008, 29, 2535–2547;
- 11bR. E. Vandenbroucke, B. G. De Geest, S. Bonne, M. Vinken, T. Van Haecke, H. Heimberg et al., J Gene Med. 2008, 10, 783–794;
- 11cJ. S. Lee, J. J. Green, K. T. Love, J. Sunshine, R. Langer, D. G. Anderson, Nano Lett. 2009, 9, 2402–2406.
- 12
- 12aT. Yu, L. Xiaoxuan, B. Anne-Laure, W. Yang, L. Cheng, E. Patrick Erbacher, Q. Fanqi, R. Palma, B. J.-P. Behr, P. Ling, Angew. Chem. Int. Ed. 2012, 51, 8478–8484; Angew. Chem. 2012, 124, 8606–8612;
- 12bJ. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, J. R. Bake, Proc. Natl. Acad. Sci. USA 1996, 93, 4897–4802.
- 13A. A. Eltoukhy, D. Chen, C. A. Alabi, R. Langer, D. G. Anderson, Adv. Mater. 2013, 25, 1487–1493.
- 14Y. Li, Y. D. Tseng, S. Y. Kwon, L. d’Espaux, J. S. Bunch, P. L. McEuen, D. Luo, Nat. Mater. 2004, 3, 38–42.
- 15
- 15aC. I. Chang et al., J. Gene Med. 2012, 14, 138–146;
- 15bC. I. Chang, S. W. Hong, S. Kim, D. K. Lee, Biochem. Biophys. Res. Commun. 2007, 359, 997–1003.
- 16
- 16aC. A. Hong, B. Jang, E. H. Jeong, H. Jeong, H. Lee, Chem. Commun. 2014, 50, 13049–13051;
- 16bJ. Adamcik, D. V. Klinov, G. Witz, S. K. Sekatskii, G. Dietler, FEBS Lett. 2006, 580, 5671.
- 17
- 17aS. Zhang, S. J. Li, G. Lykotrafitis, G. Bao, S. Suresh, Adv. Mater. 2009, 21, 419–424;
- 17bC. H. Choi, L. Hao, S. P. Narayan, E. Auyeung, C. A. Mirkin, Proc. Natl. Acad. Sci. USA 2013, 110, 7625–7630;
- 17cS. J. Lee et al., Mol. Ther. 2014, 22, 397–408.
- 18
- 18aS. D. Jo, J. S. Kim, C. C. Joe, H. Mok, Y. S. Nam, Macromol. Biosci. 2014, 14, 195–201;
- 18bH. Lee et al., Nat. Nanotechnol. 2012, 7, 389–393.
- 19
- 19aS. Sajeesh et al., J. Controlled Release 2014, 196, 28–36.