Core-Modified Rubyrins Containing Dithienylethene Moieties†
Zhikuan Zhou
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. Yi Chang
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Search for more papers by this authorDr. Soji Shimizu
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. John Mack
Department of Chemistry, Rhodes University, Grahamstown (South Africa)
Search for more papers by this authorChristian Schütt
Otto-Diels-Institute for Organic Chemistry, University of Kiel (Germany)
Search for more papers by this authorProf. Rainer Herges
Otto-Diels-Institute for Organic Chemistry, University of Kiel (Germany)
Search for more papers by this authorCorresponding Author
Prof. Zhen Shen
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorCorresponding Author
Prof. Nagao Kobayashi
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorZhikuan Zhou
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. Yi Chang
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Search for more papers by this authorDr. Soji Shimizu
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. John Mack
Department of Chemistry, Rhodes University, Grahamstown (South Africa)
Search for more papers by this authorChristian Schütt
Otto-Diels-Institute for Organic Chemistry, University of Kiel (Germany)
Search for more papers by this authorProf. Rainer Herges
Otto-Diels-Institute for Organic Chemistry, University of Kiel (Germany)
Search for more papers by this authorCorresponding Author
Prof. Zhen Shen
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorCorresponding Author
Prof. Nagao Kobayashi
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorWe acknowledge financial support provided by the Major State Basic Research Development Program of China (2013CB922101 and 2011CB808704), the National Natural Science Foundation of China (21371090) to Z.S. and the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) through Grant-in-Aids for Scientific Research on Innovative Areas (25109502, “Stimuli-Responsive Chemical Species”), Scientific Research (B) (23350095), and Young Scientist (B) (24750031). R.H. and C.S. are grateful for support from the Deutsche Forschungsgemeinschaft SFB 677 “Function by Switching”. The theoretical calculations were carried out at the Centre for High-Performance Computing in Cape Town and at the Otto-Diels-Institute.
Graphical Abstract
Tuning aromaticity: Two stable core-modified rubyrins bearing one (1) and two (2) dithienylethene (DTE) units have been synthesized. Compound 1, with a “closed-form” DTE unit, has a cyclic conjugated system with 26 π-electrons. In contrast, macrocycle 2 containing one “open-form” DTE unit has nonaromatic properties.
Abstract
Two stable core-modified rubyrins bearing one and two dithienylethene (DTE) units (1 and 2) have been synthesized. With one “closed-form” DTE unit, 1 shows aromaticity associated with its conjugated circuit of 26 π-electrons. In contrast, rubyrin 2 containing one “open-form” DTE unit has nonaromatic properties.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201402711_sm_miscellaneous_information.pdf3.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. L. Sessler, D. Seidel, Angew. Chem. 2003, 115, 5292–5333;
10.1002/ange.200200561 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5134–5175;
- 1bH. Furuta, H. Maeda, A. Osuka, Chem. Commun. 2002, 1795–1804;
- 1cM. Stępień, N. Sprutta, L. Latos-Grażyński, Angew. Chem. 2011, 123, 4376–4430;
10.1002/ange.201003353 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 4288–4340;
- 1dT. K. Chandrashekar, S. Venkatraman, Acc. Chem. Res. 2003, 36, 676–691.
- 2
- 2aJ.-Y. Shin, K. S. Kim, M.-C. Yoon, J. M. Lim, Z. S. Yoon, A. Osuka, D. Kim, Chem. Soc. Rev. 2010, 39, 2751–2767;
- 2bM. Bröring, Angew. Chem. 2011, 123, 2484–2486;
10.1002/ange.201007442 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 2436–2438;
- 2cA. Osuka, S. Saito, Chem. Commun. 2011, 47, 4330–4339;
- 2dJ. I. Wu, I. Fernández, P. v. R. Schleyer, J. Am. Chem. Soc. 2013, 135, 315–321.
- 3
- 3aR. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214–3220;
- 3bD. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.
- 4
- 4aZ. Gross, G. Golubkov, L. Simkhovich, Angew. Chem. 2000, 112, 4211–4213;
Angew. Chem. Int. Ed. 2000, 39, 4045–4047;
10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 4bI. Aviv, Z. Gross, Chem. Commun. 2007, 1987–1999.
- 5
- 5aZ. L. Xue, Z. Shen, J. Mack, D. Kuzuhara, H. Yamada, T. Okujima, N. Ono, X. Z. You, N. Kobayashi, J. Am. Chem. Soc. 2008, 130, 16478–16479;
- 5bZ. L. Xue, J. Mack, H. Lu, L. Zhang, X. Z. You, D. Kuzuhara, M. Stillman, H. Yamada, S. Yamauchi, N. Kobayashi, Z. Shen, Chem. Eur. J. 2011, 17, 4396–4407;
- 5cD. Kuzuhara, H. Yamada, Heterocycles 2013, 87, 1209–1240.
- 6
- 6aA. Srinivasan, V. M. Reddy, S. J. Narayanan, B. Sridevi, S. K. Pushpan, M. Ravikumar, T. K. Chandrashekar, Angew. Chem. 1997, 109, 2710–2713;
10.1002/ange.19971092308 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 2598–2601;
- 6bD. Wu, A. B. Descalzo, F. Weik, F. Emmerling, Z. Shen, X.-Z. You, K. Rurack, Angew. Chem. 2008, 120, 199–203; Angew. Chem. Int. Ed. 2008, 47, 193–197;
- 6cI. Simkowa, L. Latos-Grażyński, M. Stępień, Angew. Chem. 2010, 122, 7831–7835;
10.1002/ange.201004015 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7665–7669;
- 6dI. Grocka, L. Latos-Grażyński, M. Stępień, Angew. Chem. 2013, 125, 1078–1082;
10.1002/ange.201208289 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 1044–1048.
- 7
- 7aJ. L. Sessler, T. Morishima, V. Lynch, Angew. Chem. 1991, 103, 1018–1020; Angew. Chem. Int. Ed. Engl. 1991, 30, 977–980;
- 7bS. Shimizu, J.-Y. Shin, H. Furuta, R. Ismael, A. Osuka, Angew. Chem. 2003, 115, 82–86; Angew. Chem. Int. Ed. 2003, 42, 78–82;
- 7cS. Saito, A. Osuka, Angew. Chem. 2011, 123, 4432–4464; Angew. Chem. Int. Ed. 2011, 50, 4342–4373.
- 8J. E. Reeve, H. A. Collins, K. D. Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, H. L. Anderson, J. Am. Chem. Soc. 2009, 131, 2758–2759.
- 9
- 9aS.-Y. Kee, J. M. Lim, S.-J. Kim, J. Yoo, J.-S. Park, T. Sarma, V. M. Lynch, P. K. Panda, J. L. Sessler, D. Kim, C.-H. Lee, Chem. Commun. 2011, 47, 6813–6815;
- 9bW.-Y. Cha, J. M. Lim, M.-C. Yoon, Y. M. Sung, B. S. Lee, S. Katsumata, M. Suzuki, H. Mori, Y. Ikawa, H. Furuta, A. Osuka, D. Kim, Chem. Eur. J. 2012, 18, 15838–15844.
- 10M.-C. Yoon, J.-Y. Shin, J. M. Lim, S. Saito, T. Yoneda, A. Osuka, D. Kim, Chem. Eur. J. 2011, 17, 6707–6715.
- 11
- 11aS. Mori, A. Osuka, J. Am. Chem. Soc. 2005, 127, 8030–8031;
- 11bS. Shimizu, Y. Tanaka, K. Youfu, A. Osuka, Angew. Chem. 2005, 117, 3792–3795; Angew. Chem. Int. Ed. 2005, 44, 3726–3729;
- 11cT. Yoneda, A. Osuka, Chem. Eur. J. 2013, 19, 7314–7318.
- 12Y. Chang, H. Chen, Z. Zhou, Y. Zhang, C. Schütt, R. Herges, Z. Shen, Angew. Chem. 2012, 124, 12973–12977; Angew. Chem. Int. Ed. 2012, 51, 12801–12805.
- 13
- 13aL. N. Lucas, J. van Esch, R. M. Kellogg, B. L. Feringa, Chem. Commun. 1998, 2313–2314;
- 13bK. A. Green, M. P. Cifuentes, T. C. Corkery, M. Samoc, M. G. Humphrey, Angew. Chem. 2009, 121, 8007–8010; Angew. Chem. Int. Ed. 2009, 48, 7867–7870;
- 13cJ. C.-H. Chan, W. H. Lam, H.-L. Wong, N. Zhu, W.-T. Wong, V. W.-W. Yam, J. Am. Chem. Soc. 2011, 133, 12690–12705;
- 13dS. K. Brayshaw, S. Schiffers, A. J. Stevenson, S. J. Teat, M. R. Warren, R. D. Bennett, I. V. Sazanovich, A. R. Buckley, J. A. Weinstein, P. R. Raithby, Chem. Eur. J. 2011, 17, 4385–4395;
- 13eS. Lee, Y. You, K. Ohkubo, S. Fukuzumi, W. Nam, Angew. Chem. 2012, 124, 13331–13335; Angew. Chem. Int. Ed. 2012, 51, 13154–13158.
- 14
- 14aM. Takeshita, S. Yamaguchi, Chem. Lett. 2011, 40, 646–647;
- 14bH. Jin-nouchi, M. Takeshita, Chem. Eur. J. 2012, 18, 9638–9644.
- 15
- 15aA. Osuka, D. Fujikane, H. Shinmori, S. Kobatake, M. Irie, J. Org. Chem. 2001, 66, 3913–3923;
- 15bB. Gorodetsky, D. Sud, T. B. Norsten, A. J. Myles, N. R. Branda, J. Porphyrins Phthalocyanines 2003, 7, 313–317.
- 16Q. Luo, B. Chen, M. Wang, H. Tian, Adv. Funct. Mater. 2003, 13, 233–239.
- 17
- 17aJ. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney, A. M. Marguerettaz, J. Org. Chem. 1987, 52, 827–836;
- 17bT. D. Lash, D. T. Richter, C. M. Shiner, J. Org. Chem. 1999, 64, 7973–7982.
- 18A. Srinivasan, S. K. Pushpan, M. Ravikumar, T. K. Chandrashekar, R. Roy, Tetrahedron 1999, 55, 6671–6680.
- 19Crystallographic data for 1: C59.5H41ClF2N2S4, Mr=985.63, crystal dimensions: 0.40>0.40>0.05 mm3, monoclinic C2/c, a=13.741(3), b=18.160(4), c=37.729(8) Å, β=95.668(2)°, V=9369(4) Å3, Z=8, Dcalcd=1.398 g cm−3, T=100 K, 28 692 measured reflections, 7662 reflections with [I>2s(I)]. R=0.0596, Rw=0.1210, GOF=1.152. CCDC 976688 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 20T. Kimura, T. Iwama, T. Namauo, E. Suzuki, T. Fukuda, N. Kobayashi, T. Sasamori, N. Tokitoh, Eur. J. Inorg. Chem. 2011, 888–894.
- 21
- 21aJ. Michl, J. Am. Chem. Soc. 1978, 100, 6801–6811;
- 21bJ. Michl, J. Am. Chem. Soc. 1978, 100, 6812–6818;
- 21cJ. Michl, Pure Appl. Chem. 1980, 52, 1549–1570;
- 21dJ. Michl, Tetrahedron 1984, 40, 3845–3934.
- 22
- 22aU. Höweler, J. W. Downing, J. Fleischhauer, J. Michl, J. Chem. Soc. Perkin Trans. 2 1998, 1101–1117;
- 22bJ. Fleischhauer, U. Höweler, J. Michl, Spectrochim. Acta Part A 1999, 55, 585–606;
- 22cJ. Fleischhauer, U. Höweler, J. Michl, J. Phys. Chem. A 2000, 104, 7762–7775.
- 23
- 23aJ. Mack, M. J. Stillman, N. Kobayashi, Coord. Chem. Rev. 2007, 251, 429–453;
- 23bN. Kobayashi, A. Muranaka, J. Mack, Circular Dichroism and Magnetic Circular Dichroism Spectroscopy for Organic Chemists, Royal Society of Chemistry, Cambridge, 2011.
10.1039/9781849732932 Google Scholar