Multiple Switching and Photogated Electrochemiluminescence Expressed by a Dihydroazulene/Boron Dipyrromethene Dyad†
Christian Trieflinger Dr.
Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany, Fax: (+49) 941-943-4984
Search for more papers by this authorHolger Röhr Dipl.-Phys.
Div. I.3, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany, Fax: (+49) 30-8104-5005
Associated with: Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin
Search for more papers by this authorKnut Rurack Dr.
Div. I.3, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany, Fax: (+49) 30-8104-5005
Search for more papers by this authorJörg Daub Prof.
Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany, Fax: (+49) 941-943-4984
Search for more papers by this authorChristian Trieflinger Dr.
Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany, Fax: (+49) 941-943-4984
Search for more papers by this authorHolger Röhr Dipl.-Phys.
Div. I.3, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany, Fax: (+49) 30-8104-5005
Associated with: Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin
Search for more papers by this authorKnut Rurack Dr.
Div. I.3, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany, Fax: (+49) 30-8104-5005
Search for more papers by this authorJörg Daub Prof.
Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany, Fax: (+49) 941-943-4984
Search for more papers by this authorThis research was supported by the German Research Foundation (DFG), the German National Academic Foundation (C.T.), and BAM's PhD program (H.R.). This work is part of the Graduate College “Sensory Photoreceptors in Natural and Artificial Systems” supportedby the DFG (GRK 640, University of Regensburg).
Graphical Abstract
Optical control of the photo- and electrochemiluminescence of a brightly fluorescent reporter group is possible by switching between the photochromic units of dyads 1 a and 1 b. Irradiation, that is, writing in information, with UV light converts the highly luminescent dihydroazulene 1 a into the weakly emissive vinylheptafulvene 1 b. Readout of the system can be performed by either electrochemically generated or photogenerated luminescence.
References
- 1
- 1aM. A. van der Horst, K. J. Hellingwerf, Acc. Chem. Res. 2004, 37, 13–20;
- 1bF. M. Raymo, Adv. Mater. 2002, 14, 401–414;
- 1cJ.-M. Lehn, Proc. Natl. Acad. Sci. USA 2002, 99, 4763–4768;
- 1dA. P. de Silva, N. D. McClenaghan, Chem. Eur. J. 2004, 10, 574–586.
- 2
- 2aR. R. Rando, Chem. Rev. 2001, 101, 1881–1896;
- 2bW. R. Briggs, E. Huala, Annu. Rev. Cell Dev. Biol. 1999, 15, 33–62;
- 2cA. R. Cashmore, J. A. Jarillo, Y. L. Wu, D. M. Liu, Science 1999, 284, 760–765;
- 2dY. Han, S. Braatsch, L. Osterloh, G. Klug, Proc. Natl. Acad. Sci. USA 2004, 101, 12306–12311.
- 3
- 3aM. Irie, Chem. Rev. 2000, 100, 1683;
- 3bJ.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995, pp. 124–138;
- 3cJ. Daub, J. Salbeck, T. Knöchel, C. Fischer, H. Kunkely, K. M. Rapp, Angew. Chem. 1989, 101, 1541–1542; Angew. Chem. Int. Ed. Engl. 1989, 28, 1494–1496.
- 4
- 4aG. M. Tsivgoulis, J.-M. Lehn, Angew. Chem. 1995, 107, 1188–1191;
10.1002/ange.19951071009 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 1119–1122;
- 4bN. P. M. Huck, B. L. Feringa, J. Chem. Soc. Chem. Commun. 1995, 1095–1096;
- 4cH. Spreitzer, J. Daub, Liebigs Ann. 1995, 1637–1641;
- 4dJ. Daub, M. Beck, A. Knorr, H. Spreitzer, Pure Appl. Chem. 1996, 68, 1399–1404;
- 4eT. Inada, S. Uchida, Y. Yokoyama, Chem. Lett. 1997, 321–322;
- 4fA. Fernandez-Acebes, J.-M. Lehn, Adv. Mater. 1998, 10, 1519–1522;
10.1002/(SICI)1521-4095(199812)10:18<1519::AID-ADMA1519>3.0.CO;2-R CAS Web of Science® Google Scholar
- 4gS. Tsuchiya, J. Am. Chem. Soc. 1999, 121, 48–53;
- 4hJ. M. Endtner, F. Effenberger, A. Hartschuh, H. Port, J. Am. Chem. Soc. 2000, 122, 3037–3046;
- 4iT. B. Norsten, N. R. Branda, J. Am. Chem. Soc. 2001, 123, 1784–1785;
- 4jV. W.-W. Yam, C.-C. Ko, N. Zhu, J. Am. Chem. Soc. 2004, 126, 12734–12735.
- 5
- 5aH. Spreitzer, J. Daub, Chem. Eur. J. 1996, 2, 1150–1158;
- 5bJ. Achatz, C. Fischer, J. Salbeck, J. Daub, J. Chem. Soc. Chem. Commun. 1991, 504–507;
- 5cL. Gobbi, P. Seiler, F. Diederich, V. Gramlich, Helv. Chim. Acta 2000, 83, 1711–1723;
- 5dT. Mrozek, J. Daub, A. Ajayaghosh in Molecular Switches (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 63–106;
10.1002/3527600329.ch3 Google Scholar
- 5eJ. Daub, C. Trieflinger, O. Kushnir, R. Prochazka, Mol. Cryst. Liq. Cryst. 2005, 430, 115–122.
- 6
- 6aH. Görner, C. Fischer, S. Gierisch, J. Daub, J. Phys. Chem. 1993, 97, 4110–4117;
- 6bJ. Ern, M. Petermann, T. Mrozek, J. Daub, K. Kuldová, C. Kryschi, Chem. Phys. 2000, 259, 331–337;
- 6cV. De Waele, U. Schmidhammer, T. Mrozek, J. Daub, E. Riedle, J. Am. Chem. Soc. 2002, 124, 2438–2439.
- 7
- 7aJ. Karolin, L. B.-A. Johansson, L. Strandberg, T. Ny, J. Am. Chem. Soc. 1994, 116, 7801–7806;
- 7bM. Kollmannsberger, T. Gareis, S. Heinl, J. Breu, J. Daub, Angew. Chem. 1997, 109, 1391–1393;
10.1002/ange.19971091228 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 1333–1335;
- 7cJ. Daub, K. Kelnhofer, T. Gareis, A. Knorr, M. Kollmannsberger, Y.-H. Tak, H. Bässler, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 1997, 38, 339–340;
- 7dR. Y. Lai, A. J. Bard, J. Phys. Chem. B 2003, 107, 5036–5042;
- 7eP. Toele, H. Zhang, C. Trieflinger, J. Daub, M. Glasbeek, Chem. Phys. Lett. 2003, 368, 66–75.
- 8The ECL measurements were carried out with an unstirred solution (c=1×10−3 M; supporting electrolyte: 0.1 M Bu4NPF6) in an electrochemical cell: Stefan Hien, PhD Thesis, University of Regensburg, 1995. The potential was switched with alternation between the oxidation and reduction potentials (see inset of Figure 2, electrochemical switching frequency 1 s−1, scan rate of the spectrometer: 240 nm min−1). The spectrum consisting of discrete signals is the result of the relatively slow switching frequency. The bathochromic shift of ca. 20 nm between the fluorescence and the ECL spectrum is well known and can be attributed to reabsorption effects as a result of the higher dye concentration used in the ECL experiment and the different dielectric properties of the supporting electrolyte.
- 9VHF was reported to be entirely nonfluorescent, see ref. [6a].
- 10For a description of the analysis of FRET processes, see P. Wu, L. Brand, Anal. Biochem. 1994, 218, 1–13. The following equations apply: kFRET=(1/τD)(R0/r)6 with r being the distance between the FRET partners and τD the lifetime of the unperturbed donor 3 (5.15 ns in CH2Cl2). R06=8.875×10−5(κ2ΦDJ/n4) mit J=∫FD(λ)εA(λ)λ4dλ, where J is the overlap integral between the fluorescence of the donor (i.e. 3 in CH2Cl2) and the absorption of the acceptor, obtained after deconvolution of the absorption spectrum of 1 b, κ2=2/3 is a geometry factor for random orientation of the two subunits, ΦD is the fluorescence quantum yield of the unperturbed donor (here, for model 3: ΦD=0.95 in CH2Cl2), and n is the refractive index of the solvent.
- 11If no other deactivation processes are present, kFRET can be also expressed as kFRET=(1/τDA)−(1/τD) with τDA being the fluorescence lifetime of the FRET ensemble. By combining the equations in refs.[10] and [11] one may calculate a value for r.
- 12J. Aihara, K. Araya, K. Chiba, Y. Matsunaga, Adv. Mol. Relax. Interact. Processes 1980, 18, 199–210.
- 13K. Kelnhofer, A. Knorr, Y.-H. Tak, H. Bässler, J. Daub, Acta Polym. 1997, 48, 188–192.
- 14J. Olmsted III, J. Phys. Chem. 1979, 83, 2581–2584.