Crystal Engineering: Toward Intersecting Channels from a Neutral Network with a bcu-Type Topology†
Tzuoo-Tsair Luo
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
Search for more papers by this authorHui-Lien Tsai Prof. Dr.
Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
Search for more papers by this authorShang-Li Yang
Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
Search for more papers by this authorYen-Hsiang Liu Prof. Dr.
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Fax: (+886) 2-27831237
Search for more papers by this authorR. Dayal Yadav Dr.
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Fax: (+886) 2-27831237
Search for more papers by this authorChan-Cheng Su Prof. Dr.
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
Search for more papers by this authorChuen-Her Ueng Prof. Dr.
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
Search for more papers by this authorLee-Gin Lin Prof. Dr.
Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
Search for more papers by this authorKuang-Lieh Lu Prof. Dr.
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Fax: (+886) 2-27831237
Search for more papers by this authorTzuoo-Tsair Luo
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
Search for more papers by this authorHui-Lien Tsai Prof. Dr.
Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
Search for more papers by this authorShang-Li Yang
Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
Search for more papers by this authorYen-Hsiang Liu Prof. Dr.
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Fax: (+886) 2-27831237
Search for more papers by this authorR. Dayal Yadav Dr.
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Fax: (+886) 2-27831237
Search for more papers by this authorChan-Cheng Su Prof. Dr.
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
Search for more papers by this authorChuen-Her Ueng Prof. Dr.
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
Search for more papers by this authorLee-Gin Lin Prof. Dr.
Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
Search for more papers by this authorKuang-Lieh Lu Prof. Dr.
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Fax: (+886) 2-27831237
Search for more papers by this authorWe are grateful to the Academia Sinica and the National Science Council, Taiwan, for financial support of this research. bcu=body-centered cubic.
Graphical Abstract
In rare form: Although the structure of the body-centered cubic (bcu) net is commonly found in textbooks, its eight-connected topology is extremely rare in metal–organic frameworks owing to severe geometric requirements. The first example of a highly porous, neutral bcu-type framework (see picture) assembled from a unique eight-connected tricopper cluster and a 5-(4-pyridyl)tetrazolate ligand as linker is reported.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2005/z462674_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. R. Desiraju, Nature 2001, 412, 397;
- 1bM. J. Zaworotko, Nature 1999, 402, 242;
- 1cM. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine, J. M. Lehn, Angew. Chem. 2004, 116, 3728;
10.1002/ange.200300636 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3644;
- 1dS. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388; Angew. Chem. Int. Ed. 2004, 43, 2334;
- 1eC. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. 2004, 116, 1490; Angew. Chem. Int. Ed. 2004, 43, 1466;
- 1fK. T. Holman, A. M. Pivovar, M. D. Ward, Science 2001, 294, 1907;
- 1gM. D. Ward, Science 2003, 300, 1104.
- 2
- 2aG. Ferey, Science 2001, 291, 994;
- 2bG. Ferey, Science 1999, 283, 1125;
- 2cH. K. Chae, D. Y. Siberlo-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523;
- 2dS. Kitagawa, M. Kondo, Bull. Chem. Soc. Jpn. 1998, 71, 1739;
- 2eB. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629;
- 2fF. A. Cotton, C. Lin, C. A. Murillo, Acc. Chem. Res. 2001, 34, 759;
- 2gC. Janiak, Dalton Trans. 2003, 2781;
- 2hM. O'Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. M. Yaghi, J. Solid State Chem. 2000, 152, 3.
- 3
- 3aO. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705;
- 3bJ. S. Siegel, Science 2004, 304, 1256;
- 3cC. Mellot-Draznieks, J. Dutour, G. Ferey, Angew. Chem. 2004, 116, 6450;
10.1002/ange.200454251 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 6290;
- 3dM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science 2002, 295, 469;
- 3eY. H. Liu, H. C. Wu, H. M. Lin, W. H. Hou, K. L. Lu, Chem. Commun. 2003, 60;
- 3fB. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 11559.
- 4J. D. Dunitz, Chem. Commun. 2003, 545.
- 5For a few representative examples, see:
- 5aM. Eddaoudi, J. Kim, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2002, 124, 376;
- 5bJ. Sun, L. Weng, Y. Zhou, J. Chen, Z. Chen, Z. Liu, D. Zhao, Angew. Chem. 2002, 114, 4651;
Angew. Chem. Int. Ed. 2002, 41, 4471;
10.1002/1521-3773(20021202)41:23<4471::AID-ANIE4471>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 5cH. K. Chae, J. Kim, O. D. Friedrichs, M. O'Keeffe, O. M. Yaghi, Angew. Chem. 2003, 115, 4037;
10.1002/ange.200351546 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3907;
- 5dS. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, J. Chem. Soc. Dalton Trans. 1999, 2977;
- 5eB. F. Abrahams, M. G. Haywood, R. Robson, D. A. Slizys, Angew. Chem. 2003, 115, 1144;
10.1002/ange.200390263 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1111;
- 5fV. Niel, A. L. Thompson, M. C. Munoz, A. Galet, A. E. Goeta, J. A. Real, Angew. Chem. 2003, 115, 3890;
10.1002/ange.200351853 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3759;
- 5gZ. Wang, B. Zhang, T. Otsuka, K. Inoue, H. Kobayashi, M. Kurmoo, Dalton Trans. 2004, 2209.
- 6
- 6aA. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley, New York, 1977;
- 6bO. D. Friedrichs, M. O'Keeffe, O. M. Yaghi, Acta Crystallogr. Sect. A 2003, 59, 22;
- 6cO. D. Friedrichs, M. O'Keeffe, O. M. Yaghi, Acta Crystallogr. Sect. A 2003, 59, 515.
- 7
- 7aB. Moulton, J. Lu, M. J. Zaworotko, J. Am. Chem. Soc. 2001, 123, 9224;
- 7bD. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schröder, J. Am. Chem. Soc. 2001, 123, 3401.
- 8
- 8aD. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schröder, Angew. Chem. 2001, 113, 2509;
Angew. Chem. Int. Ed. 2001, 40, 2443;
10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C PubMed Web of Science® Google Scholar
- 8bJ. Lu, W. T. A. Harrison, A. J. Jacobson, Angew. Chem. 1995, 107, 2759; Angew. Chem. Int. Ed. Engl. 1995, 34, 2557;
- 8cJ. U. Schutze, R. Eckhardt, R. D. Fischer, D. C. Apperley, N. A. Davies, R. K. Harris, J. Organomet. Chem. 1997, 534, 187;
- 8dH. Chun, D. Kim, D. N. Dybtsev, K. Kim, Angew. Chem. 2004, 116, 989;
10.1002/ange.200353139 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 971;
- 8eD. L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, D. M. Proserpio, C. Wilson, M. Schröder, Angew. Chem. 2004, 116, 1887; Angew. Chem. Int. Ed. 2004, 43, 1851;
- 8fL. Pan, H. Liu, X. Lei, X. Huang, D. H. Olson, N. J. Turro, J. Li, Angew. Chem. 2003, 115, 560; Angew. Chem. Int. Ed. 2003, 42, 542;
- 8gQ. R. Fang, X. Shi, G. Wu, G. Tian, G. S. Zhu, Y. F. Li, L. F. Wang, C. L. Wang, Y. Chen, Z. D. Zhang, Z. Guo, T. C. Shang, X. H. Cai, S. L. Qiu, Acta Chim. Sinica 2002, 60, 2087.
- 9
- 9aZ. R. Qu, H. Zhao, X. S. Wang, Y. H. Li, Y. M. Song, Y. J. Liu, Q. Ye, R. G. Xiong, B. F. Abrahams, Z. L. Xue, X. Z. You, Inorg. Chem. 2003, 42, 7710;
- 9bL. Z. Wang, Z. R. Qu, H. Zhao, X. S. Wang, R. G. Xiong, Z. L. Xue, Inorg. Chem. 2003, 42, 3969;
- 9cR. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams, Z. L. Xue, Angew. Chem. 2002, 114, 3954;
Angew. Chem. Int. Ed. 2002, 41, 3800;
10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 9dX. Xue, X. S. Wang, L. Z. Wang, R. G. Xiong, B. F. Abrahams, X. Z. You, Z. L. Xue, C. M. Che, Inorg. Chem. 2002, 41, 6544.
- 10
- 10aL. Carlucci, G. Ciani, D. M. Proserpio, Angew. Chem. 1999, 111, 3700;
10.1002/(SICI)1521-3757(19991203)111:23<3700::AID-ANGE3700>3.0.CO;2-I Google ScholarAngew. Chem. Int. Ed. 1999, 38, 3488;10.1002/(SICI)1521-3773(19991203)38:23<3488::AID-ANIE3488>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 10bS. Bhandari, M. F. Mahon, K. C. Molloy, J. S. Palmer, S. F. Sayers, J. Chem. Soc. Dalton Trans. 2000, 1053;
- 10cP. J. van Koningsbruggen, Y. Garcia, H. Kooijman, A. L. Spek, J. G. Haasnoot, O. Kahn, J. Linares, E. Codjovi, F. Varret, J. Chem. Soc. Dalton Trans. 2001, 466;
- 10dA. F. Stassen, M. Grunert, A. M. Mills, A. L. Spek, J. G. Haasnoot, J. Reedijk, W. Linert, Dalton Trans. 2003, 3628;
- 10eC. Jiang, Z. Yu, S. Wang, C. Jiao, J. Li, Z. Wang, Y. Cui, Eur. J. Inorg. Chem. 2004, 3662;
- 10fA. Facchetti, A. Abbotto, L. Beverina, S. Bradamante, P. Mariani, C. L. Stern, T. J. Marks, A. Vacca, G. A. Pagani, Chem. Commun. 2004, 1770;
- 10gJ. Tao, Z. J. Ma, R. B. Huang, L. S. Zheng, Inorg. Chem. 2004, 43, 6133.
- 11
- 11aF. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc. 2003, 125, 9983;
- 11bF. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc. 2002, 124, 12210;
- 11cZ. P. Demko, K. B. Sharpless, J. Org. Chem. 2001, 66, 7945;
- 11dZ. P. Demko, K. B. Sharpless, Angew. Chem. 2002, 114, 2217;
10.1002/1521-3757(20020617)114:12<2217::AID-ANGE2217>3.0.CO;2-X Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2113;10.1002/1521-3773(20020617)41:12<2113::AID-ANIE2113>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 11eZ. P. Demko, K. B. Sharpless, Angew. Chem. 2002, 114, 2214;
10.1002/1521-3757(20020617)114:12<2214::AID-ANGE2214>3.0.CO;2-E Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2110;10.1002/1521-3773(20020617)41:12<2110::AID-ANIE2110>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 11fZ. P. Demko, K. B. Sharpless, Org. Lett. 2002, 4, 2525;
- 11gZ. P. Demko, K. B. Sharpless, Org. Lett. 2002, 4, 4091.
- 12R. Prins, M. Biagini-Cingi, M. Drillon, R. A. G. de Graaff, J. Haasnoot, A. M. Manotti-Lanfredi, P. Rabu, J. Reedijk, F. Ugozzoli, Inorg. Chim. Acta 1996, 248, 35.
- 13 A. L. Spek, J. Appl. Cryst. 2003, 36, 7–13.
- 14Y. Garcia, P. J. van Koningsbruggen, G. Bravic, D. Chasseau, O. Kahn, Eur. J. Inorg. Chem. 2003, 356.
- 15A suitable single crystal of 1 with dimensions 0.12×0.10×0.08 mm3 was mounted on the tip of a glass fiber and placed onto the goniometer head for indexing and intensity data collection using a Bruker Smart CCD diffractometer (MoKα=0.71073 Å). The raw frame data for 1 were integrated into SHELX-format reflection files and corrected for Lorentz and polarization effects with the Denzo program. An empirical absorption correction was applied by using the Multiscan method. The structure of 1 was solved by direct methods and refined against F2 by the full-matrix least-squares technique, using the WINGX, PLATON, and SHELX software packages. Except for the guest molecules, non-hydrogen atoms were refined with anisotropic displacement parameters, and the hydrogen atoms of aromatic rings were calculated and refined as riding modes. The water and DMF guest molecules that show positional disorder could not be fixed in the structure model. During the final stages of refinement, several Q peaks were found, which probably correspond to highly disordered solvent molecules and were fixed as oxygen atoms and refined with isotropic displacement parameters. The hydrogen atoms associated with the coordinated water molecules and disordered guest molecules could not be located from difference Fourier maps, and no attempt was made to place them. However, they are included in the empirical formula. Further details of experimental and magnetic studies are given in the Supporting Information. Crystal data for 1: C33H51Cl2Cu3N23O10 {[Cu3Cl2(4-ptz)4(H2O)2]⋅(3 DMF⋅5 H2O)}, Mr=1191.45, orthorhombic, Pnmn, a=12.3305(2), b=15.5069(3), c=15.6412(3) Å, V=2990.72(9) Å3, Z=2, ρcalcd=1.366 g cm−3, μ=1.180 mm−1, λ(MoKα)=0.71073 Å, F(000)=1780, T=293(2) K, A total of 19 921 reflections were collected in the range θ=4.12–27.49°, of which 3538 were unique (Rint=0.0512). Final R indices: R1=0.0399, wR2=0.1716 for 2818 reflections [I>2σ(I)]; R1=0.0725, wR2=0.1830 for 3538 independent reflections (all data) and 147 parameters, GOF=1.060. CCDC-256347 (1) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.