In the Golden Age of Organocatalysis†
Peter I. Dalko Dr.
Laboratoire de Recherches Organiques associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France, Fax: (+33) 1-4079-4660
Search for more papers by this authorLionel Moisan
CEA-SACLAY, Service de Marquage Moléculaire et de Chimie Bioorganique, Bât 547, 91191 Gif-sur-Yvette Cedex, France
Search for more papers by this authorPeter I. Dalko Dr.
Laboratoire de Recherches Organiques associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France, Fax: (+33) 1-4079-4660
Search for more papers by this authorLionel Moisan
CEA-SACLAY, Service de Marquage Moléculaire et de Chimie Bioorganique, Bât 547, 91191 Gif-sur-Yvette Cedex, France
Search for more papers by this authorThe illustration on the frontispiece is taken from the codex The Book of Chess, Dice, and Board Games, completed around 1280 by Alfonso X of Castille. Alfonso's heritage represents above all a great cultural bridge between the Christian West and the Muslim East. In a similar way, organocatalysis represents a link between two major forms of catalysis: metal-complex-mediated and enzymatic catalysis, and thus between synthetic and bioorganic chemistry.
Graphical Abstract
Metal-free synthesis: An increasing number of asymmetric organic reactions can be catalyzed by a chiral organic molecule. Although substrate dependency remains an important issue in many cases, a large number of organocatalytic transformations are as efficient as current standards in asymmetric synthesis demand (see example).
Abstract
The term “organocatalysis” describes the acceleration of chemical reactions through the addition of a substoichiometric quantity of an organic compound. The interest in this field has increased spectacularly in the last few years as result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions. Organocatalytic reactions are becoming powerful tools in the construction of complex molecular skeletons. The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose “Golden Age” has already dawned.
References
- 1
- 1aIn many cases it is difficult to define the boundary between organometallic and purely organic asymmetric catalysis. Organometallic reactions, in which a catalytic amount of an organic ligand participates, are not considered as organocatalytic reactions. The elements that can be contained in “organic” compounds can also be decided arbitrarily, in particular for metalloid elements. For example, according to general consensus, silicon is not considered to be a metal, but boron is. On the other hand, the absence of a metal is not an absolute criterion: Thus, in phase-transfer reactions a metal ion (e.g. Na+, K+, Cs+) may play an indirect role through association with the base. For this reason, in organocatalytic reactions the “absence of metals” is more correctly considered within the context of the postulated “primary” catalytic cycle.
- 1bThis overview covers enantioselective reactions that were described since our preceding account,[3a] between 2001 and 2004.
- 2S. Pizzarello, A. L. Weber, Science 2004, 303, 1151.
- 3
- 3aP. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840–3864;
10.1002/1521-3757(20011015)113:20<3840::AID-ANGE3840>3.0.CO;2-M Google ScholarAngew. Chem. Int. Ed. 2001, 40, 3726–3748;10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 3bA. Berkessel, H. Gröger, Metal-Free Organic Catalysts in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2004;
- 3cM. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev. 2003, 103, 3401–3430;
- 3d“Special issue: Asymmetric Organocatalysis”, Acc. Chem. Res. 2004, 37, 487–631.
- 4For reviews on enantioselective catalysis dealing partly with organocatalytic reactions, see:
- 4aH. Tye, P. J. Comina, J. Chem. Soc. Perkin Trans. 1 2001, 1729–1747;
- 4bS. Bräse, F. Lauterwasser, R. E. Zieger, Adv. Synth. Catal. 2003, 345, 869–929;
- 4cP. McMorn, G. J. Hutchings, Chem. Soc. Rev. 2004, 33, 108–122;
- 4d Organic Synthesis Highlights V (Eds.: ) Wiley-VCH, Weinheim, 2003;
- 4eJ.-A. Ma, D. Cahard, Angew. Chem. 2004, 116, 4666–4683; Angew. Chem. Int. Ed. 2004, 43, 4566–4583;
- 4f“Special Feature: Asymmetric Catalysis”: Proc. Natl. Acad. Sci. USA, 2004, 101, 5311–5696 (issue 15).
- 5T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691–1693.
- 6The term was coined in analogy with pharmaceutical compound classes that are active against a number of different biological targets.
- 7
- 7aK. Kacprzak, J. Gawronsky, Synthesis 2001, 961–998;
- 7bS.-K. Tian, Y. Chen, J. Hang, L. Tang, P. McDaid, L. Deng, Acc. Chem. Res. 2004, 37, 621–631.
- 8
- 8aFor the concept of “ideal synthesis”, see: P. A. Wender, S. T. Handy, D. L. Wright, Chem. Ind. 1997, 19, 765–769.
- 9D. Gani, Nature 2001, 414, 703–705.
- 10For a review, see: P. R. Schreiner, Chem. Soc. Rev. 2003, 32, 289–296.
- 11See also:
- 11aT. Schustere, M. Kurz, M. W. Göbel, J. Org. Chem. 2000, 65, 1697–1701;
- 11bY. Huang, V. H. Rawal, J. Am. Chem. Soc. 2002, 124, 9662–9663;
- 11cL. R. Dominge, J. Andrés, J. Org. Chem. 2003, 68, 8662–8668.
- 12
- 12aN. E. Leadbeater, M. Marco, Angew. Chem. 2003, 115, 1445–1447;
10.1002/ange.200390334 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1407–1409;
- 12bN. E. Leadbeater, M. Marco, J. Org. Chem. 2003, 68, 5660–5667.
- 13
- 13aN. E. Leadbeater, M. Marco, B. J. Tominack, Org. Lett. 2003, 5, 3919–3922;
- 13bP. Appukkuttan, W. Dehaen, E. Van der Eycken, Eur. J. Org. Chem. 2003, 4713–4716.
- 14D. Ma, Q. Cai, Synthesis 2004, 128–130.
- 15R. Zhang, F. Zhao, M. Sato, Y. Ikushima, Chem. Commun. 2003, 1548–1549.
- 16C. Chevrin, J. Le Bras, F. Hénin, J. Muzart, Tetrahedron Lett. 2003, 44, 8099–8102.
- 17
- 17aH. Gröger, Chem. Eur. J. 2001, 7, 5246–5251;
10.1002/1521-3765(20011217)7:24<5246::AID-CHEM5246>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 17bM. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109, 1290–1311;
10.1002/ange.19971091204 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 1236–1256.
- 18B. Westermann, Angew. Chem. 2003, 115, 161–163;
10.1002/ange.200390039 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 151–153.
- 19
- 19aB. List, Synlett 2001, 11, 1675–1686;
- 19bH. Gröger, J. Wilken, Angew. Chem. 2001, 113, 545–548;
10.1002/1521-3757(20010202)113:3<545::AID-ANGE545>3.0.CO;2-J Google ScholarAngew. Chem. Int. Ed. 2001, 40, 529–532;10.1002/1521-3773(20010202)40:3<529::AID-ANIE529>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 19cB. List, Tetrahedron 2002, 58, 5573–5590;
- 19dE. R. Jarvo, S. J. Miller, Tetrahedron 2002, 58, 2481–2495;
- 19eM. Movassaghi, E. N. Jacobsen, Science 2002, 298, 1904–1905;
- 19fN. Gathergood, Aust. J. Chem. 2003, 55, 615;
- 19gW. Notz, F. Tanaka, C. F. Barbas III, Acc. Chem. Res. 2004, 37, 580–591.
- 20The natural compound is mostly extracted from chicken feathers; for more details, see reference [28] and the cover picture of Angew. Chem. 2003, 115; Angew. Chem. 2003, 42, issue 2.
- 21For a recent review on enantiodivergence, see: M. P. Sibi, M. Liu, Curr. Org. Chem. 2001, 5, 719–755.
- 22
- 22aS. Bahmanyar, K. N. Houk, Org. Lett. 2003, 5, 1249–1251;
- 22bS. Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am. Chem. Soc. 2003, 125, 2475–2479;
- 22cL. Hoang, S. Bahmanyar, K. N. Houk, B. List, J. Am. Chem. Soc. 2003, 125, 16–17;
- 22dS. Bahmanyar, K. N. Houk, J. Am. Chem. Soc. 2001, 123, 12 911–12 912;
- 22eS. Bahmanyar, K. N. Houk, J. Am. Chem. Soc. 2001, 123, 11 273–11 283;
- 22fC. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong, K. N. Houk, Acc. Chem. Res. 2004, 37, 558–569; see also:
- 22gJ. Kofoed, J. Nielsen, J. L. Reymond, Bioorg. Med. Chem. Lett. 2003, 13, 2445–2447.
- 23T. P. Brady, S. H. Kim, K. Wen, E. A. Theodorakis, Angew. Chem. 2004, 116, 757–760;
10.1002/ange.200352868 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 739–742.
- 24For related derivatives, see:
- 24aM. Nakadai, S. Saito, H. Yamamoto, Tetrahedron 2002, 58, 8167–8177;
- 24bZ. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Wu, J. Am. Chem. Soc. 2003, 125, 5262–5263;
- 24cF. Fache, O. Piva, Tetrahedron: Asymmetry 2003, 14, 139–143;
- 24dT. J. Dickerson, K. D. Janda, J. Am. Chem. Soc. 2002, 124, 3220–3221;
- 24eA. J. A. Cobb, D. M. Shaw, S. V. Ley, Synlett 2004, 558–560.
- 25
- 25aB. Alcaide, P. Almendros, Eur. J. Org. Chem. 2002, 1595–1601;
- 25bB. Alcaide, P. Almendros, Angew. Chem. 2003, 115, 884–886;
10.1002/ange.200390201 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 858–860;
- 25cC. Palomo, M. Oiarbide, J. M. García, Chem. Eur. J. 2002, 8, 36–44;
- 25dC. Palomo, M. Oiarbide, J. M. García, Chem. Soc. Rev. 2004, 33, 65–75;
- 25eS. Saito, H. Yamamoto , Acc. Chem. Res. 2004, 37, 570–579.
- 26See, for example: S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi, J. Am. Chem. Soc. 1996, 118, 2843–2859.
- 27R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B.-W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, R. B. Chènevert, A. Fliri, K. Frobel, H.-J. Gais, D. G. Garratt, K. Hayakawa, W. Heggie, D. P. Hesson, D. Hoppe, I. Hoppe, J. A. Hyatt, D. Ikeda, P. A. Jacobi, K. S. Kim, Y. Kobuke, K. Kojima, K. Krowicki, V. J. Lee, T. Leutert, S. Malchenko, J. Martens, R. S. Matthews, B. S. Ong, J. B. Press, T. V. RajanBabu, G. Rousseau, H. M. Sauter, M. Suzuki, K. Tatsuta, L. M. Tolbert, E. A. Truesdale, I. Uchida, Y. Ueda, T. Uyehara, A. T. Vasella, W. C. Vladuchick, P. A. Wade, R. M. Williams, H. N.-C. Wong, J. Am. Chem. Soc. 1981, 103, 3210–3213. We thank Prof. T. V. RajanBabu for drawing our attention to this work.
- 28See, for example: C. Pidathala, L. Hoang, N. Vignola, B. List, Angew. Chem. 2003, 115, 2891–2894;
10.1002/ange.200351266 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 2785–2788.
- 29
- 29aA. Córdova, W. Notz, C. F. Barbas III, Chem. Commun. 2002, 3024–3025;
- 29bY.-Y. Peng, Q.-P. Ding, Z. Li, P. G. Wang, J.-P. Cheng, Tetrahedron Lett. 2003, 44, 3871–3875; for a PEG-supported catalyst, see:
- 29cM. Benaglia, M. Cinquini, F. Cozzi, A. Puglisi, G. Celentano, Adv. Synth. Catal. 2002, 344, 533–542;
- 29dM. Benaglia, G. Celentano, F. Cozzi, Adv. Synth. Catal. 2001, 343, 171–173.
- 30
- 30aT.-P. Loh, L.-C. Feng, H.-Y. Yang, J.-Y. Yang, Tetrahedron Lett. 2002, 43, 8741–8743;
- 30bP. Kotrusz, I. Kmentová, B. Gotov, S. Toma, E. Solcániová, Chem. Commun. 2002, 2510–2511.
- 30cFor a temperature-dependent dynamic solvent effect, see: G. Cainelli, P. Galetti, D. Giacomini, A. Gualandi, A. Quintavalla, Helv. Chim. Acta 2003, 86, 3548–3559.
- 31
- 31aY. Sekiguchi, A. Sasaoka, A. Shimomoto, S. Fujioka, H. Kotsuki, Synlett 2003, 1655–1658; see also:
- 31bY. Hayashi, W. Tsuboi, M. Shoji, N. Suzuki, J. Am. Chem. Soc. 2003, 125, 11 208–11 209.
- 32
- 32aQ. Pan, B. Zou, Y. Wang, D. Ma, Org. Lett. 2004, 6, 1009–1012; see also:
- 32bZ. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Wu, J. Am. Chem. Soc. 2003, 125, 5262–5263;
- 32cGy. Szöllösi, G. London, L. Baláspiri, Cs. Somlai, M. Bartók, Chirality 2003, 15, S 90–S96;
- 32dH. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. 2004, 116, 2017–2020;
10.1002/ange.200352724 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1983–1986;
- 32eT. D. Dickerson, K. D. Janda, J. Am. Chem. Soc. 2002, 124, 3220–3221;
- 32fY.-Y. Peng, Q.-P. Ding, Z. Li, P. G. Wang, J.-P. Cheng, Tetrahedron Lett. 2003, 44, 3871–3875;
- 32gS. P. Mathew, H. Iwamura, D. G. Blackmond, Angew. Chem. 2004, 116, 3379–3383;
10.1002/ange.200453997 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3317–3321.
- 33
- 33aA. Córdova, W. Notz, C. F. Barbas III, J. Org. Chem. 2002, 67, 301–303;
- 33bN. S. Chowdari, D. B. Ramachary, A. Córdova, C. F. Barbas III, Tetrahedron Lett. 2002, 43, 9591–9595;
- 33cA. E. Asato, C. Watanabe, X.-Y. Li, R. S. H. Liu, Tetrahedron Lett. 1992, 33, 3105–3108.
- 34
- 34aW. Notz, K. Sakthivel, T. Bui, G. Zhong, C. F. Barbas III, Tetrahedron Lett. 2001, 42, 199–201;
- 34bA. Córdova, W. Notz, G. Zhong, J. M. Betancort, C. F. Barbas III, J. Am. Chem. Soc. 2002, 124, 1842–1843;
- 34cA. Córdova, S.-i. Watanabe, F. Tanaka, W. Notz, C. F. Barbas III, J. Am. Chem. Soc. 2002, 124, 1866–1867; see also:
- 34dN. Mase, F. Tanaka, C. F. Barbas III, Org. Lett. 2004, 5, 4369–4372;
- 34eN. Mase, F. Tanaka, C. F. Barbas III, Angew. Chem. 2004, 116, 2474–2477;
10.1002/ange.200353546 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2420–2423;
- 34fR. Thayumanavan, F. Tanaka, C. F. Barbas III, Org. Lett. 2004, 6, ASAP, DOI: 10.1021/ol0485417..
- 35A. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 6798–6799.
- 36A. Bøgevig, N. Kumaragurubaran, K. A. Jørgensen, Chem. Commun. 2002, 620–621.
- 37A. Bøgevig, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, Synlett 2003, 1915–1918.
- 38G. S. Cortez, R. L. Tennyson, D. Romo, J. Am. Chem. Soc. 2001, 123, 7945–7946; G. S. Cortez, S. H. Oh, D. Romo, Synthesis 2001, 1731–1736.
- 39
- 39aH. J. Martin, B. List, Synlett 2003, 1901–1902;
- 39bJ. Kofoed, J. Nielsen, J.-L. Reymond, Bioorg. Med. Chem. Lett. 2003, 13, 2445–2447.
- 40A. Córdova, Acc. Chem. Res. 2004, 37, 102–112.
- 41
- 41aB. List, J. Am. Chem. Soc. 2000, 122, 9336–9337;
- 41bB. List, P. Pojarliev, W. T. Biller, H. J. Martin, J. Am. Chem. Soc. 2002, 124, 827–833.
- 42
- 42aA. Córdova, Synlett 2003, 1651–1654;
- 42bA. Córdova, Chem. Eur. J. 2004, ASAP.
- 43Y. Hayashi, W. Tsuboi, I. Ashimine, T. Uroshima, M. Shoji, K. Sakai, Angew. Chem. 2003, 115, 3805–3808; Angew. Chem. Int. Ed. 2003, 42, 3677–3680.
- 44
- 44aW. Notz, F. Tanaka, S.-i. Watanabe, N. S. Chowdari, J. M. Turner, R. Thayumanavan, C. F. Barbas III, J. Org. Chem. 2003, 68, 9624–9634; see also:
- 44bN. S. Chowdari, J. T. Suri, C. F. Barbas III, Org. Lett. 2004, 6, 2507–2510;
- 44cW. Zhuang, S. Saaby, K. A. Jørgensen, Angew. Chem. 2004, 116, 4576–4578; Angew. Chem. Int. Ed. 2004, 43, 4476–4478.
- 45T. Itoh, M. Yokoya, K. Miyauchi, K. Nagata, A. Ohsawa, Org. Lett. 2003, 5, 4301–4304.
- 46A. Córdova, C. F. Barbas III, Tetrahedron Lett. 2002, 43, 7749–7752.
- 47W. Notz, F. Tanaka, S.-i. Watanabe, N. S. Chowdari, J. M. Turner, R. Thayumanavan, C. F. Barbas III, J. Org. Chem. 2003, 68, 9624–9634.
- 48N. S. Chowdari, D. B. Ramachary, C. F. Barbas III, Synlett 2003, 1906–1909.
- 49Y. R. Jorapur, Synlett 2004, 746–747.
- 50S.-i. Watanabe, A. Córdova, F. Tanaka, C. F. Barbas III, Org. Lett. 2002, 4, 4519–4522.
- 51A. Córdova, C. F. Barbas III, Tetrahedron Lett. 2003, 44, 1923–1926.
- 52B. List, C. Castello, Synlett 2001, 1687–1689.
- 53P. Pojarliev, W. T. Biller, H. J. Martin, B. List, Synlett 2003, 1903–1905.
- 54For a recent Review, see: R. O. Duthaler, Angew. Chem. 2003, 115, 1005–1008;
10.1002/ange.200390228 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 975–978.
- 55
- 55aB. List, J. Am. Chem. Soc. 2002, 124, 5656–5657;
- 55bA. Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A. Jørgensen, Angew. Chem. 2002, 114, 1868–1871;
10.1002/1521-3757(20020517)114:10<1868::AID-ANGE1868>3.0.CO;2-P Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1790–1793;10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 55cN. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig, K. A. Jørgensen, J. Am. Chem. Soc. 2002, 124, 6254–6255; see also:
- 55dH. Iwamura, S. P. Mathew, D. G. Blackmond, J. Am. Chem. Soc. 2004, 126, ASAP, DOI: 10.1021/ja046258x; for a Review, see:
- 55eP. Merino, T. Tejero, Angew. Chem. 2004, 116, 3055–3058; Angew. Chem. Int. Ed. 2004, 43, 2995–2997.
- 56H. Vogt, S. Vanderheiden, S. Bräse, Chem. Commun. 2003, 2448–2449.
- 57
- 57aG. Zhong, Angew. Chem. 2003, 115, 4379–4382; Angew. Chem. Int. Ed. 2003, 42, 4247–4250;
- 57bY. Hayashi, J. Yamaguchi, K. Hibino, M. Shoji, Tetrahedron Lett. 2003, 44, 8293–8296;
- 57cS. P. Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 10 808–10 809.
- 58
- 58aH. Momiyama, H. Yamamoto, Org. Lett. 2002, 4, 3579–3582;
- 58bN. Momiyama, H. Yamamoto, J. Am. Chem. Soc. 2004, 126, 6498.
- 59G. Zhong, Chem. Commun. 2004, 606–607.
- 60A. Bøgevig, H. Sunden, A. Córdova, Angew. Chem. 2004, 116, 1129–1132;
10.1002/ange.200353018 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1109–1112.
- 61Y. Hayashi, J. Yamaguchi, T. Sumiya, M. Shoji, Angew. Chem. 2004, 116, 1132–1135; Angew. Chem. Int. Ed. 2004, 43, 1112–1115.
- 62For reviews, see:
- 62aO. M. Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem. 2002, 1877–1894;
- 62bN. Krause, A. Hoffmann-Röder, Synthesis 2001, 171–196;
- 62cM. P. Sibi, S. Manyem, Tetrahedron 2000, 56, 8033–8061.
- 63For related metal-complex-catalyzed asymmetric conjugate additions, see, for example:
- 63aC. A. Luchaco-Cullis, A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 8192–8193;
- 63bT. Hayashi, Synlett 2001, 879–887;
- 63cA. Duursma, A. J. Minnaard, B. L. Feringa, Tetrahedron 2002, 58, 5773–5778;
- 63dA. Alexakis, C. Benhaim, S. Rosset, M. Humam, J. Am. Chem. Soc. 2002, 124, 5262–5263;
- 63eA. Rimkus, N. Sewald, Org. Lett. 2003, 5, 79–80;
- 63fD. M. Barnes, J. Ji, M. G. Fickes, M. A. Fitzgerald, S. A. King, H. E. Morton, F. A. Plagge, M. Preskill, S. H. Wagaw, S. J. Wittenberger, J. Zhang, J. Am. Chem. Soc. 2002, 124, 13 097–13 105.
- 64
- 64aO. Andrey, A. Alexakis, G. Bernardinelli, Org. Lett. 2003, 5, 2559–2561;
- 64bD. Enders, A. Seki, Synlett 2002, 26–28;
- 64cB. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3, 2423–2425;
- 64dK. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260–5267; for intramolecular addition, see:
- 64e M. T. Hechavarria Fronseca, B. List, Angew. Chem. 2004, 116, 4048–4050;
10.1002/ange.200460578 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3958–3960.
- 65
- 65aJ. M. Betancort, K. Sakthivel, R. Thayumanavan, C. F. Barbas III, Tetrahedron Lett. 2001, 42, 4441–4444;
- 65bJ. M. Betancort, C. F. Barbas III, Org. Lett. 2001, 3, 3737–3740; see also:
- 65cT. Ishii, S. Fujioka, Y. Sekiguchi, H. Kotsuki, J. Am. Chem. Soc. 2004, 126, 9558–9559;
- 65dN. Mase, R. Thayumanavan, F. Tanaka, C. F. Barbas III, Org. Lett. 2004, 6, 2527–2530.
- 66
- 66aA. Alexakis, O. Andrey, Org. Lett. 2002, 4, 3611–3614;
- 66bD. Enders, A. Seki, Synlett, 2002, 26–28;
- 66cO. Andrey, A. Alexakis, G. Bernardinelli, Org. Lett. 2003, 5, 2559–2561.
- 67N. Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. 2004, 116, 1292–1297;
10.1002/ange.200353364 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1272–1277.
- 68N. Vignola, B. List, J. Am. Chem. Soc. 2003, 125, 450–451.
- 69K. Juhl, K. A. Jørgensen, Angew. Chem. 2003, 115, 1536–1539;
10.1002/ange.200250652 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1498–1501.
- 70R. Thayumanavan, B. Dhevalapally, K. Sakthivel, F. Tanaka, C. F. Barbas III, Tetrahedron Lett. 2002, 43, 3817–3820.
- 71D. B. Ramchary, N. S. Chowdari, C. F. Barbas III, Angew. Chem. 2003, 115, 4365–4369;
10.1002/ange.200351916 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 4233–4237.
- 72A. M. Hafez, A. E. Taggi, H. Wack, J. Esterbrook, T. Lectka, Org. Lett. 2001, 3, 2049–2051.
- 73A. E. Taggi, H. Wack, A. M. Hafez, S. France, T. Lectka, Org. Lett. 2002, 4, 627–629.
- 74M. H. Shah, S. France, T. Lectka, Synlett 2003, 1937–1939.
- 75
- 75aA. M. Hafez, A. E. Taggi, T. Lectka, Chem. Eur. J. 2002, 8, 4114–4119;
10.1002/1521-3765(20020916)8:18<4114::AID-CHEM4114>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 75bA. M. Hafez, A. E. Taggi, T. Dudding, T. Lectka, J. Am. Chem. Soc. 2001, 123, 10 853–10 859;
- 75cH. Wack, A. E. Taggi, A. M. Hafez, W. J. Drury III, T. Lectka, J. Am. Chem. Soc. 2001, 123, 1531–1532.
- 76For a review on asymmetric reactions with ketenes, see: R. K. Orr, M. A. Calter, Tetrahedron 2003, 59, 3545–3565.
- 77
- 77aM. A. Calter, W. Liao, J. Am. Chem. Soc. 2002, 124, 13 127–13 129;
- 77bM. A. Calter, R. K. Orr, W. Song, Org. Lett. 2003, 5, 4745–4748.
- 78
- 78aA. E. Taggi, A. M. Hafez, T. Dudding, T. Lectka, Tetrahedron 2002, 58, 8351–8356;
- 78bT. Dudding, A. M. Hafez, A. E. Taggi, T. R. Wagerle, T. Lectka, Org. Lett. 2002, 4, 387–390;
- 78cA. E. Taggi, A. M. Hafez, H. Wack, B. Young, D. Ferraris, T. Lectka, J. Am. Chem. Soc. 2002, 124, 6626–6635;
- 78dA. M. Hafez, A. E. Taggi, T. Dudding, T. Lectka, J. Am. Chem. Soc. 2001, 123, 10 853–10 859;
- 78eH. Wack, S. France, A. M. Hafez, W. J. Drury III, A. Weatherwax, T. Lectka, J. Org. Chem. 2004, 69, 4531–4533; for a review, see:
- 78fS. France, A. E. Taggi, T. Lectka, Acc. Chem. Res. 2004, 37, 592–600.
- 79
- 79aA. E. Taggi, A. M. Hafez, T. Lectka, Acc. Chem. Res. 2003, 36, 10–19;
- 79bA. M. Hafez, T. Dudding, T. R. Wagerle, M. H. Shah, A. E. Taggi, T. Lectka, J. Org. Chem. 2003, 68, 5819–5825.
- 80For recent reviews, see:
- 80aD. Basavaiah, A. J. Rao, Chem. Rev. 2003, 103, 811–891;
- 80bP. Langer, Angew. Chem. 2000, 112, 3177–3180;
Angew. Chem. Int. Ed. 2000, 39, 3049–3052.
10.1002/1521-3773(20000901)39:17<3049::AID-ANIE3049>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 81
- 81aK. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1968, 41, 2815;
- 81bA. B. Baylis, M. E. D. Hillman, German Patent 2155113, 1972; A. B. Baylis, M. E. D. Hillman, US-A 3743669, 1972; [ Chem. Abstr. 1972, 77, 34174q].
- 82L. M. Walsh, C. L. Winn, J. M. Goodman, Tetrahedron Lett. 2002, 43, 8219–8222.
- 83V. K. Aggarwal, I. Emme, S. Y. Fulford, J. Org. Chem. 2003, 68, 692–700.
- 84
- 84aM. Shi, J.-K. Jiang, Tetrahedron: Asymmetry 2002, 13, 1941–1947;
- 84bM. Shi, J.-K. Jiang, C.-Q. Li, Tetrahedron Lett. 2002, 43, 127–130.
- 85J. E. Imbriglio, M. M. Vasbinder, S. J. Miller, Org. Lett. 2003, 5, 3741–3743.
- 86N. T. McDougal, S. E. Schaus, J. Am. Chem. Soc. 2003, 125, 12 094–12 095.
- 87Y. Iwabuchi, M. Furukawa, T. Esumi, S. Hatakeyama, Chem. Commun. 2001, 2030–2031.
- 88Y. Iwabuchi, M. Sugihara, T. Esumi, S. Hatakeyama, Tetrahedron Lett. 2001, 42, 7867–7871.
- 89
- 89aS. Kawahara, A. Nakano, T. Esumi, Y. Iwabuchi, S. Hatakeyama, Org. Lett. 2003, 5, 3103–3105;
- 89bD. Balan, H. Adolfsson, Tetrahedron Lett. 2003, 44, 2521–2524;
- 89cM. Shi, Y.-M. Xu, Angew. Chem. 2002, 114, 4689–4692;
Angew. Chem. Int. Ed. 2002, 41, 4507–4510.
10.1002/1521-3773(20021202)41:23<4507::AID-ANIE4507>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 90J. S. Johnson, Angew. Chem. 2004, 116, 1348–1350;
10.1002/ange.200301702 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1326–1328.
- 91D. Enders, U. Kallfass, Angew. Chem. 2002, 114, 1822–1824;
10.1002/1521-3757(20020517)114:10<1822::AID-ANGE1822>3.0.CO;2-W Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1743–1745.10.1002/1521-3773(20020517)41:10<1743::AID-ANIE1743>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 92Y. Tachibana, N. Kihara, T. Takata, J. Am. Chem. Soc. 2004, 126, 3438–3439.
- 93
- 93aM. S. Kerr, J. R. de Alaniz, T. Rovis, J. Am. Chem. Soc. 2002, 124, 10 298–10 299;
- 93bM. S. Kerr, T. Rovis, J. Am. Chem. Soc. 2004, 126, 8876–8877.
- 94A. Solladié-Cavallo, M. Roje, T. Isarno, V. Sunjic, V. Vinkovic, Eur. J. Org. Chem. 2000, 1077–1080, and references therein; for a theoretical study on asymmetric sulfur-ylide epoxidation, see:
10.1002/(SICI)1099-0690(200003)2000:6<1077::AID-EJOC1077>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 94bM. A. Silva, B. R. Bellenie, J. M. Goodman, Org. Lett. 2004, 6, 2559–2562.
- 95V. K. Aggarwal, J. Richardson, Chem. Commun. 2003, 2644–2651.
- 96J. Zanardi, C. Leriverend, D. Aubert, K. Julienne, P. Metzner, J. Org. Chem. 2001, 66, 5620–5623.
- 97M. Ishizaki, O. Hoshino, Heterocycles 2002, 57, 1399–1402.
- 98V. K. Aggarwal, J. N. Harvey, J. Richardson, J. Am. Chem. Soc. 2002, 124, 5747–5756.
- 99V. K. Aggarwal, M. Ferrara, C. J. O'Brien, A. Thompson, R. V. H. Jones, R. Fieldhouse, J. Chem. Soc. Perkin Trans. 1 2001, 1635–1643.
- 100T. Saito, M. Sakairi, D. Akiba, Tetrahedron Lett. 2001, 42, 5451–5454.
- 101V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara, G. Hynd, M. Porcelloni, Angew. Chem. 2001, 113, 1482–1485;
Angew. Chem. Int. Ed. 2001, 40, 1433–1436.
10.1002/1521-3773(20010417)40:8<1433::AID-ANIE1433>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 102V. K. Aggarwal, J.-L. Vasse, Org. Lett. 2003, 5, 3987–3990.
- 103
- 103aC. D. Papageorgiou, S. V. Ley, M. J. Gaunt, Angew. Chem. 2003, 115, 852–855;
10.1002/ange.200390191 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 828–831;
- 103bN. Bremeyer, S. C. Smith, S. V. Ley, M. J. Gaunt, Angew. Chem. 2004, 116, 2735–2738;
10.1002/ange.200454007 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2681–2684; see also:
- 103cC. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt, Angew. Chem. 2004, 116, 4741–4744;
10.1002/ange.200460234 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 4641–4644.
- 104
- 104aFor a review of asymmetric acyl-transfer reactions, see: A. C. Spivey, A. Maddaford, A. Redgrave, Org. Prep. Proced. Int. 2000, 32, 3131–3134.
- 105B. M. Trost, T. Mino, J. Am. Chem. Soc. 2003, 125, 2410–2411.
- 106
- 106aJ. Hang, H. Li, L. Deng, Org. Lett. 2002, 4, 3321–3324;
- 106bL. Tang, L. Deng, J. Am. Chem. Soc. 2002, 124, 2870–2871;
- 106cJ. Hang, S.-K. Tian, L. Tang, L. Deng, J. Am. Chem. Soc. 2001, 123, 12 696–12 697;
- 106dY. Chen, L. Deng, J. Am. Chem. Soc. 2001, 123, 11 302–11 303;
- 106eY. Chen, S.-K. Tian, L. Deng, J. Am. Chem. Soc. 2000, 122, 9542–9543.
- 107C. Choi, S.-K. Tian, L. Deng, Synthesis 2001, 1737–1741.
- 108S. Mizuta, M. Sadamori, T. Fujimoto, I. Yamamoto, Angew. Chem. 2003, 115, 3505–3507;
10.1002/ange.200250719 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3383–3385.
- 109For a review on DMAP catalysts, see: R. Murugan, E. F. V. Scriven, Aldrichimica Acta 2003, 36, 21–27.
- 110
- 110aA. C. Spivey, F. Zhu, M. B. Mitchell, S. G. Davey, R. L. Jarvest, J. Org. Chem. 2003, 68, 7379–7385;
- 110bC. Malardier-Jugroot, A. C. Spivey, M. A. Whitehead, J. Mol. Struct. 2003, 623, 263–276;
- 110cA. C. Spivey, P. Charbonneau, T. Fekner, D. H. Hochmuth, A. Maddaford, C. Malardier-Jugroot, A. J. Redgrave, M. A. Whitehead, J. Org. Chem. 2001, 66, 7394–7401;
- 110dA. C. Spivey, A. Maddaford, D. Leese, A. J. Redgrave, J. Chem. Soc. Perkin Trans. 1 2001, 1785–1794.
- 111K.-S. Jeung, S.-H. Kim, H.-J. Park, K.-J. Chang, K. S. Kim, Chem. Lett. 2002, 1114–1115.
- 112aA. Córdova, M. R. Tremblay, B. Clapham, K. D. Janda, J. Org. Chem. 2001, 66, 5645–5648;
- 112bB. Clapham, C.-W. Cho, K. D. Janda, J. Org. Chem. 2001, 66, 868–873.
- 113
- 113aG. Priem, B. Pelotier, S. J. F. Macdonald, M. S. Anson, I. B. Campbell, J. Org. Chem. 2003, 68, 3844–3848;
- 113bG. Priem, B. Pelotier, I. B. Campbell, S. J. F. Macdonald, M. S. Anson, Synlett 2003, 679–683;
- 113cG. Priem, M. S. Anson, S. J. F. Macdonald, B. Pelotier, I. B. Campbell, Tetrahedron Lett. 2002, 43, 6001–6003.
- 114
- 114aT. Kawabata, R. Stragies, T. Fukaya, Y. Nagaoka, H. Schedel, K. Fuji, Tetrahedron Lett. 2003, 44, 1545–1548;
- 114bT. Kawabata, R. Stragies, T. Fukaya, K. Fuji, Chirality 2003, 15, 71–76;
- 114cT. Kawabata, K. Yamamoto, Y. Momose, H. Yoshida, Y. Nagaoka, K. Fuji, Chem. Commun. 2001, 2700–2701.
- 115S. A. Shaw, P. Aleman, E. Vedejs, J. Am. Chem. Soc. 2003, 125, 13 368–13 369.
- 116
- 116aN. Papaioannou, J. T. Blank, S. J. Miller, J. Org. Chem. 2003, 68, 2728–2734;
- 116bB. R. Sculimbrene, A. J. Morgan, S. J. Miller, J. Am. Chem. Soc. 2002, 124, 11 653–11 656;
- 116cE. R. Jarvo, S. J. Miller, Tetrahedron 2002, 58, 2481–2495;
- 116dB. R. Sculimbrene, S. J. Miller, J. Am. Chem. Soc. 2001, 123, 10 125–10 126;
- 116eM. M. Vasbinder, E. R. Jarvo, S. J. Miller, Angew. Chem. 2001, 113, 2824–2827;
10.1002/1521-3757(20010803)113:15<2906::AID-ANGE2906>3.0.CO;2-9 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 2824–2827;10.1002/1521-3773(20010803)40:15<2824::AID-ANIE2824>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 116fN. Papaioannou, C. A. Evans, J. T. Blank, S. J. Miller, Org. Lett. 2001, 3, 2879–2882;
- 116gE. R. Jarvo, C. A. Evans, G. T. Copeland, S. J. Miller, J. Org. Chem. 2001, 66, 5522–5527;
- 116hG. T. Copeland, S. J. Miller, J. Am. Chem. Soc. 2001, 123, 6496–6502;
- 116iM. B. Fierman, D. J. O'Leary, W. E. Steinmetz, S. J. Miller, J. Am. Chem. Soc. 2004, 126, 6967–6971.
- 117For recent reviews, see:
- 117aE. Vedejs, O. Daugulis, J. A. MacKay, E. Rozners, Synlett 2001, 4166–4205;
- 117bO. Molt, T. Schrader, Synthesis 2002, 2633–2670;
- 117cD. H. Valentine, Jr.,J. H. Hillhouse, Synthesis 2003, 2437–2460;
- 117dD. H. Valentine, Jr.,J. H. Hillhouse, Synthesis 2003, 317–334.
- 118
- 118aE. Vedejs, O. Daugulis, J. Am. Chem. Soc. 2003, 125, 4166–4173;
- 118bE. Vedejs, O. Daugulis, J. A. MacKay, E. Rozners, Synlett 2001, 1499–1505;
- 118cFor a three-phase system, see: E. Vedejs, E. Rozners, J. Am. Chem. Soc. 2001, 123, 2428–2429;
- 118dE. Vedejs, J. A. MacKay, Org. Lett. 2001, 3, 535–536;
- 118eE. Vedejs, O. Daugulis, L. A. Harper, J. A. MacKay, D. R. Powell, J. Org. Chem. 2003, 68, 5020–5027;
- 118fE. Vedejs, O. Daugulis, N. Tuttle, J. Org. Chem. 2004, 69, 1389–1392.
- 119For a review, see: B. R. Sculimbrene, A. J. Morgan, S. J. Miller, Chem. Commun. 2003, 1781–1785.
- 120
- 120aB. R. Sculimbrene, S. J. Miller, J. Am. Chem. Soc. 2001, 123, 10 125–10 126;
- 120cB. R. Sculimbrene, A. J. Morgan, S. J. Miller, J. Am. Chem. Soc. 2002, 124, 11 653–11 656.
- 121S.-K. Tian, L. Deng, J. Am. Chem. Soc. 2001, 123, 6195–6196.
- 122For reviews, see:
- 122aS. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763–2794;
- 122bS. E. Denmark, J. Fu, Chem. Commun. 2003, 167–170.
- 123
- 123aV. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York, 1978;
10.1007/978-1-4615-8825-2 Google Scholar
- 123bW. B. Jensen, The Lewis Acid-Base Concepts, Wiley, New York, 1980, Chap. 4, pp. 136–137.
- 124A. Hosomi, Acc. Chem. Res. 1988, 21, 200–206.
- 125
- 125aS. E. Denmark, T. Wynn, J. Am. Chem. Soc. 2001, 123, 6199–6200;
- 125bS. E. Denmark, T. Wyn, J. Am. Chem. Soc. 2002, 124, 13 405–13 407.
- 126J. Hellwig, T. Belser, J. F. K. Miller, Tetrahedron Lett. 2001, 42, 5417–5419.
- 127S. E. Denmark, J. Fu, J. Am. Chem. Soc. 2003, 125, 2208–2216.
- 128S. E. Denmark, J. Fu, J. Am. Chem. Soc. 2001, 123, 9488–9489.
- 129S. E. Denmark, J. Fu, Org. Lett. 2002, 4, 1951–1953.
- 130
- 130aA. V. Malkov, M. Orsini, D. Pernazza, K. W. Muir, V. Langer, P. Meghani, P. Kočovský, Org. Lett. 2002, 4, 1047–1049;
- 130bA. V. Malkov, M. Bell, M. Orsini, D. Pernazza, A. Massa, P. Herrmann, P. Meghani, P. Kočovský, J. Org. Chem. 2003, 68, 9659–9668.
- 131A. V. Malkov, L. Dufkova, L. Farrugia, P. Kočovský, Angew. Chem. 2003, 115, 3802–3805;
10.1002/ange.200351737 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3674–3677.
- 132T. Shimada, A. Kina, S. Ikeda, T. Hayashi, Org. Lett. 2002, 4, 2799–2801;
- 132bT. Shimada, A. Kina, T. Hayashi, J. Org. Chem. 2003, 68, 6329–6337.
- 133See also: M. Nakajima, M. Saito, M. Uemura, S. Hashimoto, Tetrahedron Lett. 2002, 43, 8827–8829, and references therein.
- 134S. Kobayashi, C. Ogawa, H. Konishi, M. Sugiura, J. Am. Chem. Soc. 2003, 125, 6610–6611.
- 135For related allylation reactions, see:
- 135aA. Massa, A. V. Malkov, P. Kočovský, A. Scettri, Tetrahedron Lett. 2003, 44, 7179–7181;
- 135bA. Massa, A. V. Malkov, P. Kočovský, A. Scettri, Tetrahedron Lett. 2003, 44, 9067.
- 136G. J. Rowlands, Synlett 2003, 236–290.
- 137G. J. Rowlands, W. K. Barnes, Chem. Commun. 2003, 2712–2713.
- 138S. E. Denmark, S. Ghosh, Angew. Chem. 2001, 113, 4895–4898;
10.1002/1521-3757(20011217)113:24<4895::AID-ANGE4895>3.0.CO;2-1 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4759–4762.10.1002/1521-3773(20011217)40:24<4759::AID-ANIE4759>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 139S. E. Denmark, S. M. Pham, Org. Lett. 2001, 3, 2201–2204.
- 140S. E. Denmark, S. Fujimori, Org. Lett. 2002, 4, 3477–3480.
- 141S. E. Denmark, S. Fujimori, Org. Lett. 2002, 4, 3473–3476.
- 142S. E. Denmark, J. R. Heemstra, Org. Lett. 2003, 5, 2303–2306.
- 143S. E. Denmark, Y. Fan, J. Am. Chem. Soc. 2002, 124, 4233–4235.
- 144
- 144aB. Liu, X. Feng, F. Chen, G. Zhang, X. Chui, Y. Jiang, Synlett 2001, 1551–1554;
- 144bZ. Jiao, X. Feng, B. Liu, F. Chen, G. Zhang, Y. Jiang, Eur. J. Org. Chem. 2003, 3818–3826.
- 145S. Kobayashi, C. Ogawa, H. Konishi, M. Sugiura, J. Am. Chem. Soc. 2003, 125, 6610–6611.
- 146S. P. Brown, N. C. Goodwin, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 1192–1194.
- 147
- 147aN. A. Paras, D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370–4371;
- 147bJ. F. Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172–1173;
- 147cN. A. Paras, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 7894–7895.
- 148R. L. Pederson, I. M. Fellows, T. A. Ung, H. Ishihara, S. P. Hajela, Adv. Synth. Catal. 2002, 344, 728–735.
- 149N. Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. 2003, 115, 685–689;
10.1002/ange.200390150 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 661–665.
- 150N. Halland, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002, 67, 8331–8338.
- 151N. Halland, T. Hansen, K. A. Jørgensen, Angew. Chem. 2003, 115, 5105–5107;
10.1002/ange.200352136 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 4955–4957.
- 152P. McDaid, Y. Chen, L. Deng, Angew. Chem. 2002, 114, 348–350;
10.1002/1521-3757(20020118)114:2<348::AID-ANGE348>3.0.CO;2-6 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 338–340.10.1002/1521-3773(20020118)41:2<338::AID-ANIE338>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 153D. J. Guerin, S. J. Miller, J. Am. Chem. Soc. 2002, 124, 2134–2136, and references therein.
- 154T. E. Horstmann, D. J. Guerin, S. J. Miller, Angew. Chem. 2000, 112, 3781–3784;
10.1002/1521-3757(20001016)112:20<3781::AID-ANGE3781>3.0.CO;2-H Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3635–3638.10.1002/1521-3773(20001016)39:20<3635::AID-ANIE3635>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 155M. C. Kozlowski, M. Panda, J. Org. Chem. 2003, 68, 2061–2076.
- 156A. B. Northrup, D. W. C. MacMillan J. Am. Chem. Soc. 2002, 124, 2458–2460.
- 157A literature summary on the MacMillan organocatalysts is provided at www.sigmaaldrich.com.
- 158aM. Benaglia, G. Celentano, M. Cinquini, A. Puglisi, F. Cozzi, Adv. Synth. Catal. 2002, 344, 149–152;
- 158bS. A. Selkälä, J. Tois, P. M. Pihko, A. M. P. Koskinen, Adv. Synth. Catal. 2002, 344, 941–945.
- 159S. Karlsson, H. E. Högberg, Tetrahedron: Asymmetry, 2002, 13, 923–926.
- 160M. Harmata, S. K. Ghosh, X. Hong, S. Wacharasindhu, P. Kirchhoefer, J. Am. Chem. Soc. 2003, 125, 2058–2059.
- 161For reviews, see:
- 161aS. E. Denmark, Z. Wu, Synlett 1999, 847–859;
- 161bM. Frohn, Y. Shi, Synthesis 2000, 1979–2000;
- 161cY. Shi, Acc. Chem. Res. 2004, 37, 488–496;
- 161dD. Yang, Acc. Chem. Res. 2004, 37, 497–505.
- 162For related organometallic systems, see: T. Nemoto, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2001, 123, 9474–9475.
- 163H. Tian, X. She, Y. Shi, Org. Lett. 2001, 3, 715–718, and references therein.
- 164X.-Y. Wu, X. She, Y. Shi, J. Am. Chem. Soc. 2002, 124, 8792–8793.
- 165L. Shu, P. Wang, Y. Gan, Y. Shi, Org. Lett. 2003, 5, 293–296.
- 166
- 166aH. Tian, X. She, H. Yu, L. Shu, Y. Shi, J. Org. Chem. 2002, 67, 2435–2446;
- 166bH. Tian, X. She, J. Xu, Y. Shi, Org. Lett. 2001, 3, 1929–1931.
- 167
- 167aA. Armstrong, W. O. Moss, J. R. Reeves, Tetrahedron: Asymmetry 2001, 12, 2779–2781;
- 167bA. Armstrong, G. Ahmed, B. Dominguez-Fernandez, B. R. Hayter, J. S. Wailes, J. Org. Chem. 2002, 67, 8610–8617.
- 168O. Bortolini, M. Fogagnolo, G. Fantin, S. Maietti, A. Medici, Tetrahedron: Asymmetry 2001, 12, 1113–1115.
- 169K. Matsumoto, K. Tomioka, Tetrahedron Lett. 2002, 43, 631–633.
- 170M. Seki, T. Furutani, R. Imashiro, T. Kuroda, T. Yamanaka, N. Harada, H. Arakawa, M. Kusama, T. Hashiyama, Tetrahedron Lett. 2001, 42, 8201–8205.
- 171S. E. Denmark, H. Matsuhashi, J. Org. Chem. 2002, 67, 3479–3486.
- 172C. J. Stearman, V. Behar, Tetrahedron Lett. 2002, 43, 1943–1946.
- 173
- 173aP. C. Bulman Page, G. A. Rassias, D. Barros, D. Bethell, M. B. Schilling, J. Chem. Soc. Perkin Trans. 1 2000, 3325–3334;
- 173bP. C. Bulman Page, G. A. Rassias, D. Barros, A. Ardakani, B. Buckley, D. Bethell, T. A. D. Smith, M. Z. Slawin, J. Org. Chem. 2001, 66, 6926–6931;
- 173cP. C. Bulman Page, G. A. Rassias, D. Barros, A. Ardakani, D. Bethell, E. Merifield, Synlett 2002, 4, 580–582;
10.1055/s-2002-22699 Google Scholar
- 173dP. C. Bulman Page, D. Barros, B. R. Buckley, A. Ardakani, B. A. Marples, J. Org. Chem. 2004, 69, 3595–3597;
- 173eP. C. Bulman Page, B. R. Buckley, A. J. Blacker, Org. Lett. 2004, 6, 1543–1546.
- 174M.-K. Wong, L.-M. Ho, Y.-S. Zheng, C.-Y. Ho, D. Yang, Org. Lett. 2001, 3, 2587–2590.
- 175S.-i. Murahashi, S. Ono, Y. Imada, Angew. Chem. 2002, 114, 2472–2474;
10.1002/1521-3757(20020703)114:13<2472::AID-ANGE2472>3.0.CO;2-B Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2366–2368.10.1002/1521-3773(20020703)41:13<2366::AID-ANIE2366>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 176V. K. Aggarwal, C. Lopin, F. Sandrinelli, J. Am. Chem. Soc. 2003, 125, 7596–7601.
- 177For recent reviews, see:
- 177aC. Lauret, S. M. Roberts, Aldrichimica Acta 2003, 36, 47–51;
- 177bS. Baars, K.-H. Drauz, H.-P. Krimmer, S. M. Roberts, J. Sander, J. Skidmore, G. Zanardi, Org. Process Res. Dev. 2003, 7, 509–513; see also:
- 177cP. A. Bentley, R. W. Flood, S. M. Roberts, J. Skidmore, C. B. Smith, J. A. Smith, Chem. Commun. 2001, 1616–1617;
- 177dP. E. Coffey, K.-H. Drauz, S. M. Roberts, J. Skidmore, J. A. Smith, Chem. Commun. 2001, 2330–2331.
- 178
- 178aJ. Eames, N. Weerasooriya, Tetrahedron: Asymmetry 2001, 12, 1–24; for a related reaction, see also:
- 178bY. Hamashima, H. Somei, Y. Shimura, T. Tamura, M. Sodeoka, Org. Lett. 2004, 6, 1861–1864.
- 179For selected examples, see:
- 179aO. Roy, M. Diekmann, A. Riahi, F. Hénin, J. Muzart, Chem. Commun. 2001, 533–534;
- 179bO. Roy, A. Riahi, F. Hénin, J. Muzart, Eur. J. Org. Chem. 2002, 3986–3994;
- 179cM. Baur, A. Riahi, F. Hénin, J. Muzart, Tetrahedron: Asymmetry 2003, 14, 2755–2761; see also in:
- 179dK. Nishimura, M. Ono, Y. Nagaoka, K. Tomioka, Angew. Chem. 2001, 113, 454–456;
10.1002/1521-3757(20010119)113:2<454::AID-ANGE454>3.0.CO;2-F Google ScholarAngew. Chem. Int. Ed. 2001, 40, 440–442.10.1002/1521-3773(20010119)40:2<440::AID-ANIE440>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 180
- 180aH. Brunner, P. Schmidt, Eur. J. Org. Chem. 2000, 2119–2133;
- 180bL. M.-A. Rogers, J. Rouden, L. Lecomte, M.-C. Lasne, Tetrahedron Lett. 2003, 44, 3047–3050.
- 181For recent reviews, see:
- 181aJ. Eames, Eur. J. Org. Chem. 2002, 393–401;
- 181bJ.-C. Plaquevent, T. Perrard, D. Cahard, Chem. Eur. J. 2002, 8, 3301–3307;
- 181cT. Ishikawa, T. Isobe, Chem. Eur. J. 2002, 8, 553–557.
- 182T. Ishikawa, Y. Araki, T. Kumamoto, H. Seki, K. Fukuda, T. Isobe, Chem. Commun. 2001, 245–246.
- 183T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12 672–12 673.
- 184T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto, Org. Lett. 2004, 6, 625–627.
- 185B. M. Nugent, R. A. Yoder, J. N. Johnston, J. Am. Chem. Soc. 2004, 126, 3418–3419.
- 186Y. Huang, A. K. Unni, A. N. Thadani, V. H. Rawal, Nature 2003, 424, 146.
- 187For related thiourea-mediated reactions, see:
- 187aT. Okino, Y. Hoashi, Y. Takemoto, Tetrahedron Lett. 2003, 44, 2817–2821;
- 187bP. R. Schreiner, A. Wittkopp, Org. Lett. 2002, 4, 217–220;
- 187cA. Wittkopp, P. R. Schreiner, Chem. Eur. J. 2003, 9, 407–414; for a Review, see:
- 187dC. Spino, Angew. Chem. 2004, 116, 1796–1798;
10.1002/ange.200301686 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1764–1766.
- 188
- 188aA. G. Wenzel, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 12 964–12 965;
- 188bA. G. Wenzel, M. P. Lalonde, E. N. Jacobsen, Synlett 2003, 1919–1922.
- 189
- 189aP. Vachal, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 10 012–10 014;
- 189bJ. T. Su, P. Vachal, E. N. Jacobsen, Adv. Synth. Catal. 2001, 343, 197–200;
- 189cP. Vachal, E. N. Jacobsen, Org. Lett. 2000, 2, 867–870.
- 190G. Bluet, J.-M. Campagne, J. Org. Chem. 2001, 66, 4293–4298.
- 191T. Ooi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 2054–2055.
- 192S. Caron, Nga M. Do, P. Arpin, A. Larivée, Synthesis 2003, 1693–1698.
- 193See, for example: T. Bach, B. Grosch, T. Strassner, E. Herdtweck, J. Org. Chem. 2003, 68, 1107–1116, and references therein.
- 194D. F. Cauble, V. Lynch, M. J. Krische, J. Org. Chem. 2003, 68, 15–21.
- 195For recent reviews, see:
- 195aK. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013–3028;
- 195bC. Nájera, Synlett 2002, 1388–1403;
- 195cM. J. O'Donnell Aldrichimica Acta 2001, 34, 3–15;
- 195dB. Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518–525;
- 195efor related metal-containing phase-transfer systems, see: Y. N. Belokon, N. B. Bespalova, T. D. Churkina, I. Císařová, M. G. Ezernitskaya, S. R. Harutyunyan, R. Hrdina, H. B. Kagan, P. Kočovský, K. A. Kochetkov, O. V. Larionov, K. A. Lyssenko, M. North, M. Polášek, A. S. Peregudov, V. V. Prisyazhnyuk, Š. Vyskočil, J. Am. Chem. Soc. 2003, 125, 12 860–12 871;
- 195fsee also: S. Vyskočil, L. Meca, I. Tišlerova, I. Císařová, M. Polášek, S. R. Harutyunyan, Y. N. Belokon, R. M. J. Stead, L. Farrugia, S. C. Lockhart, W. L. Mitchell, P. Kočovský, Chem. Eur. J. 2002, 8, 4633–4648.
10.1002/1521-3765(20021018)8:20<4633::AID-CHEM4633>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 196C. Hofstetter, P. S. Wilkinson, T. C. Pochapsky, J. Org. Chem. 1999, 64, 8794–8800.
- 197For recent studies on this topic, see: S.-s. Jew, M.-S. Yoo, B.-S. Jeong II, I. Y. Park, H.-g. Park, Org. Lett. 2002, 4, 4245–4248.
- 198See also: B. Lygo, B. I. Andrews, J. Crosby, J. A. Peterson, Tetrahedron Lett. 2002, 43, 8015–8018.
- 199
- 199aB. Lygo, J. Crosby, J. A. Peterson, Tetrahedron 2001, 57, 6447–6453;
- 199bB. Lygo, L. D. Humphreys, Tetrahedron Lett. 2002, 43, 6677–6679.
- 200See also: L. Ducry, F. Diederich, Helv. Chim. Acta 1999, 82, 981–1004.
10.1002/(SICI)1522-2675(19990707)82:7<981::AID-HLCA981>3.0.CO;2-V CAS Web of Science® Google Scholar
- 201
- 201aD. Y. Kim, S. C. Huh, S. M. Kim, Tetrahedron Lett. 2001, 42, 6299–6301;
- 201bD. Y. Kim, S. C. Huh, Tetrahedron 2001, 57, 8933–8938.
- 202B. Lygo, B. Allbutt, Synlett 2004, 326–328.
- 203A. Armstrong, J. N. Scutt, Org. Lett. 2003, 5, 2331–2334.
- 204
- 204aR. K. Boeckman, Jr.,T. J. Clark, B. C. Shook, Org. Lett. 2002, 4, 2109–2112;
- 204bR. K. Boeckman Jr.,T. J. Clark, B. C. Shook, Helv. Chim. Acta 2002, 85, 4532–4560.
- 205R. Lépine, A.-C. Carbonnelle, J. Zhu, Synlett 2003, 1455–1458.
- 206
- 206aS.-s. Jew, B.-S. Jeong, M.-S. Yoo, H. Huh, H.-g. Park, Chem. Commun. 2001, 1244–1245;
- 206bH.-g. Park, B.-S. Jeong, M.-S. Yoo, J.-H. Lee, M.-k. Park, Y.-J. Lee, M.-J. Kim, S.-s. Jew, Angew. Chem. 2002, 114, 3162–3164;
Angew. Chem. Int. Ed. 2002, 41, 3036–3038;
10.1002/1521-3773(20020816)41:16<3036::AID-ANIE3036>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 206cH.-g. Park, B.-S. Jeong, M.-S. Yoo, J.-H. Lee, B.-s. Park, M.-J. Kim, S.-s. Jew, Tetrahedron Lett. 2003, 44, 3497–3500.
- 207H.-g. Park, B.-s. Jeong, M.-s. Yoo, M.-k. Park, H. Huh, S.-s. Jew, Tetrahedron Lett. 2001, 42, 4645–4648.
- 208S. Kim, J. Lee, T. Lee, H.-g. Park, D. Kim, Org. Lett. 2003, 5, 2703–2706.
- 209M. Masui, A. Ando, T. Shioiri, Tetrahedron Lett. 1988, 29, 2835–2838.
- 210D. Y. Kim, E. J. Park, Org. Lett. 2002, 4, 545–547.
- 211S. Arai, T. Shioiri, Tetrahedron 2002, 58, 1407–1413.
- 212M. Oku, S. Arai, K. Katayama, T. Shioiri, Synlett 2000, 493–494.
- 213T. Okino, Y. Takemoto, Org. Lett. 2001, 3, 1515–1517.
- 214H. Yu, H. Koshima, Tetrahedron Lett. 2003, 44, 9209–9211.
- 215
- 215aT. Ooi, E. Tayama, K. Doda, M. Takeuchi, K. Maruoka, Synlett 2000, 1500–1502;
- 215bB. Török, K. Balazsik, K. Felföldi, M. Bartok, Ultrason. Sonochem. 2001, 8, 191–200.
- 216
- 216aS. Arai, H. Tsuge, M. Oku, M. Miura, T. Shioiri, Tetrahedron 2002, 58, 1623–1630.
- 217D. Y. Kim, Y. J. Choi, H. Y. Park, C. U. Joung, K. O. Koh, J. Y. Mang, K.-Y. Jung, Synth. Commun. 2003, 33, 435–443.
- 218J. Ye, Y. Wang, R. Liu, G. Zhang, Q. Zhang, J. Chen, X. Liang, Chem. Commun. 2003, 2714–2715.
- 219B. Lygo, D. C. M. To, Chem. Commun. 2002, 2360–2361.
- 220
- 220aW. Adam, P. B. Rao, H.-G. Degen, C. R. Saha-Möller, Tetrahedron: Asymmetry 2001, 12, 121–125;
- 220bW. Adam, P. B. Rao, H.-G. Degen, A. Levai, T. Patonay, C. R. Saha-Möller, J. Org. Chem. 2002, 67, 259–264.
- 221See, for example: N. Mase, T. Ohno, N. Hoshikawa, K. Ohishi, H. Morimoto, H. Yoda, K. Takabe, Tetrahedron Lett. 2003, 44, 4073–4075.
- 222
- 222aT. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 1999, 121, 6519–6520;
- 222bT. Ooi, M. Takeuchi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2000, 122, 5228–5229;
- 222cT. Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. 2002, 114, 4724–4726;
10.1002/1521-3757(20021202)114:23<4724::AID-ANGE4724>3.0.CO;2-1 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 4542–4544;10.1002/1521-3773(20021202)41:23<4542::AID-ANIE4542>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 222dT. Ooi, M. Takahashi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2002, 124, 7640–7641;
- 222eT. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139–5151;
- 222fT. Ooi, D. Sakai, M. Takeuchi, E. Tayama, K. Maruoka, Angew. Chem. 2003, 115, 6048–6050;
10.1002/ange.200352658 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5868–5870;
- 222gT. Ooi, T. Miki, M. Taniguchi, M. Shiraishi, M. Takeushi, K. Maruoka, Angew. Chem. 2003, 115, 4111–4113;
10.1002/ange.200390598 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3796–3798.
- 223
- 223aK. Maruoka, J. Fluorine Chem. 2001, 112, 95–99; for a review, see:
- 223bT. Ooi, K. Maruoka, Acc. Chem. Res. 2004, 37, 526–533.
- 224
- 224aT. Hashimoto, Y. Tanaka, K. Maruoka, Tetrahedron: Asymmetry 2003, 14, 1599–1602;
- 224bT. Hashimoto, K. Maruoka, Tetrahedron Lett. 2003, 44, 3313–3316.
- 225T. Ooi, E. Tayama, K. Maruoka, Angew. Chem. 2003, 115, 599–602;
10.1002/ange.200390135 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 579–582.
- 226T. Ooi, Y. Uematsu, M. Kameda, K. Maruoka, Angew. Chem. 2002, 114, 1621–1624;
10.1002/1521-3757(20020503)114:9<1621::AID-ANGE1621>3.0.CO;2-5 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1551–1554.10.1002/1521-3773(20020503)41:9<1551::AID-ANIE1551>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 227T. Ooi, Y. Kubota, K. Maruoka, Synlett 2003, 1931–1933.
- 228B. Lygo, B. Allbutt, S. R. James, Tetrahedron Lett. 2003, 44, 5629–5632.
- 229
- 229aT. Shibuguchi, Y. Fukuta, Y. Akachi, A. Sekine, T. Ohshima, M. Shibasaki, Tetrahedron Lett. 2002, 43, 9539–9543.
- 230T. Ohshima, V. Gnanadesikan, T. Shibuguchi, Y. Fukuta, T. Nemoto, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 11 206–11 207.
- 231S. Arai, R. Tsuji, A. Nishida, Tetrahedron Lett. 2002, 43, 9535–9537.
- 232T. Kita, A. Georgieva, Y. Hashimoto, T. Nakata, K. Nagasawa, Angew. Chem. 2002, 114, 2956–2958;
Angew. Chem. Int. Ed. 2002, 41, 2832–2834.
10.1002/1521-3773(20020802)41:15<2832::AID-ANIE2832>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 233
- 233aS. E Snyder, A. B. Shvets, W. H. Pirkle, Helv. Chim. Acta 2002, 85, 3605–3615;
- 233bS. E. Snyder, W. H. Pirkle, Org. Lett. 2002, 4, 3283–3286;
- 233cW. H. Pirkle, S. E. Snyder, Org. Lett. 2001, 3, 1821–1823.
- 234
- 234aM. Garcia-Viloca, J. Gao, M. Karplus, D. G. Truhlar, Science 2004, 303, 186–195;
- 234bsee also: S. J. Benkovic, S. Hammes-Schiffer, Science 2003, 301, 1196–1202.
- 235For a recent review on cyclodextrins, see: E. Engeldinger, D. Armspach, D. Matt, Chem. Rev. 2003, 103, 4147–4174; for calixarenes, see: K. Goto, Y. Yano, E. Okada, C.-W. Liu, K. Yamamoto, R. Ueoka, J. Org. Chem. 2003, 68, 865–870, and references therein.
- 236W.-K. Chan, W.-Y. Yu, C.-M. Che, M.-K. Wong, J. Org. Chem. 2003, 68, 6576–6582.
- 237For recent results, see:
- 237aR. Breslow, J. Yang, J. Yan, Tetrahedron 2002, 58, 653–659;
- 237bJ. Yang, B. Gabriele, S. Belvedere, Y. Huang, R. Breslow, J. Org. Chem. 2002, 67, 5057–5067, and references therein.
- 238
- 238a Molecular and Ionic Recognition with Imprinted Polymers (Eds.: ), American Chemical Society, 1998;
- 238b Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and their Application in Analytical Chemistry (Ed.: ), Elsevier, Amsterdam, 2001;
- 238cMolecularly Imprinted Materials—Sensors and Other Devices (Eds.: K. J. Shea, M. Yan, M. J. Roberts, P. S. Cremer, R. M. Crooks), Materials Res. Soc. Proc. 2002, 723, Materials Research Society, 2002 (Symposia Held in San Francisco California, April 2–5, 2002);
- 238dM. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular Imprinting: From Fundamentals to Applications, Wiley-VCH, Weinheim, 2003;
- 238e M. Sibrian-Vazquez, D. A. Spivak , J. Am. Chem. Soc. 2004, 126, 7827–7833.
- 239For recent reviews, see:
- 239aC. Alexander, L. Davidson, W. Hayes, Tetrahedron 2003, 59, 2025–2056;
- 239bG. Wulff, Chem. Rev. 2002, 102, 1–28;
- 239cW. B. Motherwell, M. J. Bingham, Tetrahedron 2001, 57, 4663–4686;
- 239dB. Clapham, T. S. Reger, K. D. Janda, Tetrahedron 2001, 57, 4637–4662.
- 240
- 240aS. Otto, R. L. E. Furlan, J. K. M. Sanders, Curr. Opin. Chem. Biol. 2002, 6, 321–327;
- 240bR. L. E. Furlan, S. Otto, J. K. M. Sanders, Proc. Natl. Acad. Sci. USA 2002, 99, 4801–4804;
- 240cS. Otto, R. L. E. Furlan, J. K. M. Sanders, Science 2002, 297, 590–593;
- 240dS. Otto, R. L. E. Furlan, J. K. M. Sanders, Drug Discovery Today 2002, 7, 117–125;
- 240eS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. 2002, 114, 938–993;
10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 2002, 41, 898–952;10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 240fG. R. L. Cousins, S. A. Poulsen, J. K. M. Sanders, Curr. Opin. Chem. Biol. 2000, 4, 270–279.
- 241See, for example:
- 241aA. Biffis, G. Wulff, New J. Chem. 2001, 25, 1537–1540;
- 241bJ. M. Kim, K. D. Ahn, G. Wulff, Macromol. Chem. Phys. 2001, 202, 1105–1108;
- 241cA. G. Strikovsky, D. Kasper, M. Grun, B. S. Green, J. Hradil, G. Wulff, J. Am. Chem. Soc. 2000, 122, 6295–6296, and references therein.
- 242M. Emgenbroich, G. Wulff, Chem. Eur. J. 2003, 9, 4106–4117.
- 243For some recent examples, see:
- 243aJ.-C. Wang, M. J. Krische, Angew. Chem. 2003, 115, 6035–6037; Angew. Chem. Int. Ed. 2003, 42, 5855–5857;
- 243bA. L. Williams, J. N. Johnston, J. Am. Chem. Soc. 2003, 125, 1612–1613;
- 243cW. Zhou, L. Liu, R. Breslow, Helv. Chim. Acta 2003, 86, 3560–3567;
- 243dH. Kuroda, I. Tomita, T. Endo, Org. Lett. 2003, 5, 129–131;
- 243eC. A. Evans, S. J. Miller, J. Am. Chem. Soc. 2003, 125, 12 394–12 395;
- 243fX.-F. Zhu, J. Lan, O. Kwon, J. Am. Chem. Soc. 2003, 125, 4716–4717.
- 244For the dynamic kinetic resolution of Morita–Baylis–Hillman acetates, see: C.-W. Cho, J.-R. Kong, M. J. Krische, Org. Lett. 2004, 6, 1337–1339.
- 245For halogenation, see:
- 245aM. P. Brochu, S. P. Brown, D. W. C. MacMillan, J. Am. Chem. Soc. 2004, 126, 4108–4109;
- 245bM. Marigo, N. Kumaragurubaran, K. A. Jørgensen, Eur. J. Org. Chem. 2004, 2133–2137;
- 245cN. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790–4791.
- 246For selenylation, see: W. Wang, J. Wang, H. Li, Org. Lett. 2004, 6, 2817–2820.
- 247For aza-Friedel–Crafts alkylation, see: D. Uraguchi, K. Sorimachi, M. Terada, J. Am. Chem. Soc. 2004, 126, ASAP, DOI: 10.1021/ja046185h.
- 248For a Mannich-type reaction catalyzed by a chiral Brønsted acid, see: T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. 2004, 116, 1592–1594;
10.1002/ange.200353240 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1566–1568.
- 249For the synthesis of sulfinate esters through dynamic resolution, see: J. W. Evans, M. B. Fierman, S. J. Miller, J. Ellman, J. Am. Chem. Soc. 2004, 126, 8134–8135.
- 250For oxidation, see: A. Córdova, H. Sundén, M. Engqvist, I. Ibrahem, J. Casas, J. Am. Chem. Soc. 2004, 126, 8914–8915.
- 251For the reduction of ketimines, see:
- 251aA. V. Malkov, A. Mariani, K. N. MacDougall, P. Kočovský, Org. Lett. 2004, 6, 2253–2256;
- 251bF. Iwasaki, O. Omonura, K. Mishima, T. Maki, Y. Matsumura, Tetrahedron Lett. 2001, 42, 2525–2528.