Self-Activated Heterogeneous Fenton Process for Accelerated Degradation of Aromatic Pollutants over Copper Oxide Catalysts
Mingjie Huang
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHong-Zhi Liu
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorQing-Qing Huang
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorTao Zhou
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXiaohui Wu
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Wen-Wei Li
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Han-Qing Yu
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorMingjie Huang
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHong-Zhi Liu
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorQing-Qing Huang
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorTao Zhou
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXiaohui Wu
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Wen-Wei Li
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Han-Qing Yu
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Metal-based heterogeneous catalysts have been commonly adopted for Fenton-like oxidation of organic pollutants, but generally suffer from inadequate activity in practical water treatment applications due to surface passivation by accumulated pollutants and sluggish redox cycling of active metal. Here, we observed an unusual phenomenon of pollutant-induced activity enhancement for copper oxide (CuO) in H2O2 activation and phenol degradation, which is in sharp contrast to considerable activity decay of Fe2O3 catalyst. The CuO was found to stabilize and activate phenol via ligand-to-metal charge transfer route, generating surface-bound phenoxyl radicals for further mediating the H2O2 activation and enabling a rapid regeneration of low-valent Cu. Based on this principle, a Fe-Cu bimetal oxides catalyst was elaborated to further augment the catalyst-phenol interaction towards self-activated Fenton oxidation. The optimal catalyst achieved 14-time faster pollutant degradation rate and 2 order-of-magnitude higher H2O2 utilization efficiency than the Fe2O3 control. It also demonstrated good adaptability to degradation of diverse substituted benzenes and maintained stable performance for treatment of real lake water during 100-day continuous operation. Our work implies that the catalyst-pollutant interaction may be rationally leveraged and modulated to create highly efficient and stable heterogeneous catalytic systems, thus further unlocking their potential for sustainable water purification application.
Conflict of Interests
The authors declare that none of the work reported in this study could have been influenced by any known competing financial interests or personal relationships.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202508754-sup-0001-SuppMat.docx4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature 2016, 529, 190–194.
- 2D. Gokhale, A. F. Hamelberg, P. S. Doyle, Nat. Water 2024, 2, 62–71.
- 3Y.-J. Zhang, J.-S. Tao, Y. Hu, G.-X. Huang, Y. Pan, W.-W. Li, J.-J. Chen, H.-Q. Yu, Nat. Water 2024, 2, 770–781.
- 4Z. Yang, Y. Yin, M. Liang, W. Fu, J. Zhang, F. Liu, W. Zhang, B. Pan, Nat. Commun. 2025, 16, 146.
- 5Y. Liang, A. Feng, N. A. Al-Dhabi, J. Zhang, W. Xing, T. Chen, Y. Han, G. Zeng, L. Tang, W. Tang, Water Res. 2025, 279, 123432.
- 6Y. Jiang, D. Baimanov, S. Jin, J. Cheuk-Fung Law, P. Zhao, J. Tang, J. Peng, L. Wang, K. S.-Y. Leung, W. Sheng, S. Lin, Proc. Natl. Acad. Sci. USA 2022, 120, e2210211120.
- 7X. Xu, Y. Zhang, Y. Chen, C. Liu, W. Wang, J. Wang, H. Huang, J. Feng, Z. Li, Z. Zou, Proc. Natl. Acad. Sci. USA 2022, 119.
- 8Z. Yang, J. Qian, A. Yu, B. Pan, Proc. Natl. Acad. Sci. USA 2019, 116, 6659–6664.
- 9Q. Yan, C. Lian, K. Huang, L. Liang, H. Yu, P. Yin, J. Zhang, M. Xing, Angew. Chem. Int. Ed. 2021, 60, 17155–17163.
- 10Q.-Q. Huang, H.-Z. Liu, M. Huang, J. Wang, H.-Q. Yu, Appl. Catal. B-Environ. 2023, 330, 122592.
- 11D. Yu, L. Xu, K. Fu, X. Liu, S. Wang, M. Wu, W. Lu, C. Lv, J. Luo, Nat. Commun. 2024, 15, 2241.
- 12Q. Tian, J. Chang, B. Yu, Y. Jiang, B. Gao, J. Yang, Q. Li, Y. Gao, X. Xu, Water Res. 2024, 267, 122488.
- 13Y. Shi, Y. Hu, Y. Liu, C. Tang, J. Cheng, X. Zhu, G. Wang, J. Xie, Chem. Eng. J. 2024, 486, 150038.
- 14H. Zhang, L. Li, N. Chen, H. Ben, G. Zhan, H. Sun, Q. Li, J. Sun, L. Zhang, Appl. Catal. B-Environ. 2022, 312, 121410.
- 15C. Ling, X. Liu, H. Li, X. Wang, H. Gu, K. Wei, M. Li, Y. Shi, H. Ben, G. Zhan, C. Liang, W. Shen, Y. Li, J. Zhao, L. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200670.
- 16F. Dong, Z. Pang, S. Yang, Q. Lin, S. Song, C. Li, X. Ma, S. Nie, ACS Nano 2022, 16, 3449–3475.
- 17R. Zhu, Y. Zhu, H. Xian, L. Yan, H. Fu, G. Zhu, Y. Xi, J. Zhu, H. He, Appl. Catal. B-Environ. 2020, 270, 118891.
- 18C. Lai, X. Shi, L. Li, M. Cheng, X. Liu, S. Liu, B. Li, H. Yi, L. Qin, M. Zhang, N. An, Sci. Total Environ. 2021, 775, 145850.
- 19Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Chem. Soc. Rev. 2021, 50, 5281–5322.
- 20H. Li, J. Shang, Z. Yang, W. Shen, Z. Ai, L. Zhang, Environ. Sci. Technol. 2017, 51, 5685–5694.
- 21P.-J. Duan, J.-Y. Liu, L. Chen, M.-X. Li, J.-W. Pan, Z.-Q. Zhang, C.-W. Bai, X.-J. Chen, H.-Q. Yu, F. Chen, Nat. Water 2025, 3, 178–190.
- 22Y. Li, M. Huang, W.-D. Oh, X. Wu, T. Zhou, Chin. Chem. Lett. 34, 2023, 108247.
- 23D. Liang, J. Liu, Y. Feng, K. Tu, L. Wang, L. Qiu, X. Zhang, J. Phys. Chem. 2024, 128, 1297–1305.
- 24S. Liu, G. Liu, L. Yang, D. Li, M. Zheng, Chem. Eng. J. 2022, 427, 131666.
- 25S. Liu, G. Liu, L. Yang, X. Liu, M. Wang, L. Qin, M. Zheng, Environ. Sci. Technol. 2022, 56, 14550–14561.
- 26Q. Sun, M. Altarawneh, B. Z. Dlugogorski, E. M. Kennedy, J. C. Mackie, Environ. Sci. Technol. 2007, 41, 5708–5715.
- 27M. Huang, Y. Han, W. Xiang, D. Zhong, C. Wang, T. Zhou, X. Wu, J. Mao, Environ. Sci. Technol. 2021, 55, 15361–15370.
- 28J. D. Kubicki, L. M. Schroeter, M. J. Itoh, B. N. Nguyen, S. E. Apitz, Geochim. Cosmochim. Acta 1999, 63, 2709–2725.
- 29L. Mino, A. Zecchina, G. Martra, A. M. Rossi, G. Spoto, Appl. Catal. B-Environ. 2016, 196, 135–141.
- 30S. Chen, X. Chu, L. Wu, J. S. Foord, J. Hu, H. Hou, J. Yang, J. Phys. Chem. C 2022, 126, 912–921.
- 31D.-N. Pei, C. Liu, A.-Y. Zhang, X.-Q. Pan, H.-Q. Yu, Proc. Natl. Acad. Sci. USA 2020, 117, 30966–30972.
- 32T. Zhang, Y. Wen, Z. Pan, Y. Kuwahara, K. Mori, H. Yamashita, Y. Zhao, X. Qian, Environ. Sci. Technol. 2022, 56, 2617–2625.
- 33H. Zhou, H. Zhang, Y. He, B. Huang, C. Zhou, G. Yao, B. Lai, Appl. Catal. B-Environ. 2021, 286, 119900.
- 34L. W. Kiruri, L. Khachatryan, B. Dellinger, S. Lomnicki, Environ. Sci. Technol. 2014, 48, 2212–2217.
- 35E. Vejerano, S. M. Lomnicki, B. Dellinger, Environ. Sci. Technol. 2012, 46, 9406–9411.
- 36X. Wang, S. Li, Z. Yuan, Y. Sun, Z. Tang, X. Gao, H. Zhang, J. Li, S. Wang, D. Yang, Angew. Chem. Int. Ed. 2023, 135, e202303794.
- 37H.-Z. Liu, X.-X. Shu, M. Huang, B.-B. Wu, J.-J. Chen, X.-S. Wang, H.-L. Li, H.-Q. Yu, Nat. Commun. 2024, 15, 2327.
- 38J. Guo, Y. Wang, Y. Shang, K. Yin, Q. Li, B. Gao, Y. Li, X. Duan, X. Xu, Proc. Natl. Acad. Sci. USA 2024, 121, e2313387121.
- 39J. Mao, K. Yin, Y. Zhang, Y. Shang, Q. Li, Y. Li, B. Gao, X. Xu, Appl. Catal. B-Environ. 2024, 342, 123428.
- 40Z.-Y. Guo, R. Sun, Z. Huang, X. Han, H. Wang, C. Chen, Y.-Q. Liu, X. Zheng, W. Zhang, X. Hong, W.-W. Li, Proc. Natl. Acad. Sci. USA 2023, 120.
- 41E. P. Vejerano, G. Rao, L. Khachatryan, S. A. Cormier, S. Lomnicki, Environ. Sci. Technol. 2018, 52, 2468–2481.
- 42B. Zhang, F. Shang, X. Shi, R. Yao, F. Wei, X. Hou, W. Li, J. Zhang, ACS Appl. Nano Mater. 2023, 6, 18413–18425.
- 43Z. Chen, J. Wang, B. Yang, J. Li, Z. Liang, X. Liu, Y. Bao, J. Cao, M. Xing, Nat. Water 2025, 3, 334–344.
- 44Y. Zhao, L. Yu, C. Song, Z. Chen, F. Meng, M. Song, Environ. Sci. Technol. 2022, 56, 10710–10720.
- 45N. Mohammed Modawe Alshik Edris, J. Abdullah, S. Kamaruzaman, Y. Sulaiman, Microchim. Acta 2019, 186, 261.
- 46V. Lukeš, A. Kováčová, H. Hartmann, J. Mol. Liq. 2022, 360, 119356.
- 47W. Huang, S. Xiao, H. Zhong, M. Yan, X. Yang, Chem. Eng. J. 2021, 418, 129297.
- 48M. Huang, S. Peng, W. Xiang, C. Wang, X. Wu, J. Mao, T. Zhou, Chem. Eng. J. 2022, 429, 132372.
- 49X. Wu, A. Markir, L. Ma, Y. Xu, H. Jiang, D. P. Leonard, W. Shin, T. Wu, J. Lu, X. Ji, Angew. Chem. Int. Ed. 2019, 58, 12640–12645.
- 50H. Naatz, S. Lin, R. Li, W. Jiang, Z. Ji, C. H. Chang, J. Köser, J. Thöming, T. Xia, A. E. Nel, L. Mädler, S. Pokhrel, ACS Nano 2017, 11, 501–515.
- 51Y. Shen, C. Ren, L. Zheng, X. Xu, R. Long, W. Zhang, Y. Yang, Y. Zhang, Y. Yao, H. Chi, J. Wang, Q. Shen, Y. Xiong, Z. Zou, Y. Zhou, Nat. Commun. 2023, 14, 1117.
- 52M. Huang, Y. S. Li, C. Q. Zhang, C. Cui, Q. Q. Huang, M. Li, Z. Qiang, T. Zhou, X. Wu, H. Q. Yu, Proc. Natl. Acad. Sci. USA 2022, 119, e2202682119.
- 53W. Guo, S. Liu, X. Tan, R. Wu, X. Yan, C. Chen, Q. Zhu, L. Zheng, J. Ma, J. Zhang, Angew. Chem. Int. Ed. 2021, 60, 21979–21987.
- 54H. Wang, X. Ren, Z. Liu, B. Lv, Chem. Commun. 2022, 58, 908–924.
- 55J. Huang, Z. Chen, J. Cai, Y. Jin, T. Wang, J. Wang, Nano Res. 2022, 15, 5987–5994.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.