Harnessing Solvation Chemistry of Pentavalent Vanadium for Wide-Temperature Range Vanadium Flow Batteries
Chenkai Mu
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Tianyu Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorChengbo Zhan
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorQiang Fu
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorYuxuan Zhang
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorLinjuan Zhang
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorFuyi Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 10019 China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Yanyan Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 10019 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xianfeng Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorChenkai Mu
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Tianyu Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorChengbo Zhan
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorQiang Fu
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorYuxuan Zhang
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorLinjuan Zhang
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorFuyi Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 10019 China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Yanyan Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 10019 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xianfeng Li
Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Key Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Vanadium flow batteries (VFBs) are safe, cost-effective, and scalable solutions for storing renewable energies. However, the poor thermal stability of pentavalent vanadium [V(V)] electrolyte, manifested as V2O5 precipitation at high temperatures, leads to more critical heat management, low energy density, and even low reliability. The unclear dynamic solvation chemistry of V(V) ions brings difficulties in solving the above issues intrinsically. Herein, we investigated solvation structures and dynamic evolution of V(V) electrolyte using ab initio molecular dynamics (AIMD) and in situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS). For the first time, we clarified the transformation from [VO2(H2O)3]+ to VO(OH)3, identifying the second deprotonation as the rate-determining step. Based on this, we developed stabilization strategies through anion coordination and proton concentration control. The incorporation of HCl and trifluoromethanesulfonic acid improved the thermal stability of V(V) electrolytes remarkably. The optimized electrolyte showed no precipitation during 30-day static tests at 50 °C, enabling stable cycling performance of 3000 cycles in VFB single cells. Further demonstration in a kW-scale stack achieved over 1000 cycles, validating the scalability and viability. Our work provides insights into the solvation chemistry of V(V) species, paving the way to improve the reliability and energy density of a VFB system.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202508456-sup-0001-SuppMat.pdf7.1 MB | Supporting Information |
ange202508456-sup-0002-MoviesS1.mp418.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, J. Energy Storage 2019, 25, 100844.
- 2B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.
- 3W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 2013, 23, 970–986.
- 4 Colthorpe. “First Phase of 800 MWh World Biggest Flow Battery Commissioned in China” can be found under https://www.energy-storage.news/first-phase-of-800mwh-world-biggest-flow-battery-commissioned-in-china, 2022 (Accessed: April 14, 2025).
- 5C. Zhang, Z. Yuan, X. Li, ACS Energy Lett. 2024, 9, 3456–3473.
- 6C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H.-y. Jung, J. H. Yang, H.-T. Kim, Renewable Sustainable Energy Rev. 2017, 69, 263–274.
- 7K. Wang, Y. Zhang, L. Liu, J. Xi, Z. Wu, X. Qiu, Electrochim. Acta 2018, 259, 11–19.
- 8D. Bryans, V. Amstutz, H. H. Girault, L. E. A. Berlouis, Batteries 2018, 4, 54.
- 9C. Minke, T. Turek, J. Power Sources 2018, 376, 66–81.
- 10A. Trovò, M. Rugna, N. Poli, M. Guarnieri, Ceram. Int. 2023, 49, 24487–24498.
- 11W. M. Carvalho, L. Cassayre, D. Quaranta, F. Chauvet, R. El-Hage, T. Tzedakis, B. Biscans, J. Energy Chem. 2021, 61, 436–445.
- 12C. Madic, G. M. Begun, R. L. Hahn, J. P. Launay, W. E. Thiessen, Inorg. Chem. 1984, 23, 469–476.
- 13M. Bühl, M. Parrinello, Chem–. Eur. J. 2001, 7, 4487–4494.
- 14J. Francavilla, N. D. Chasteen, Inorg. Chem. 1975, 14, 2860–2862.
- 15M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, ChemSusChem 2016, 9, 1521–1543.
- 16N. Kausar, R. Howe, M. Skyllas-Kazacos, J. Appl. Electrochem. 2001, 31, 1327–1332.
- 17C. Sun, K. Vezzù, G. Pagot, A. Nale, Y. H. Bang, G. Pace, E. Negro, C. Gambaro, L. Meda, T. A. Zawodzinski, V. Di Noto, Electrochim. Acta 2019, 318, 913–921.
- 18F. Sepehr, S. J. Paddison, J. Phys. Chem. A 2015, 119, 5749–5761.
- 19D. N. Buckley, D. Oboroceanu, N. Quill, C. Lenihan, R. P. Lynch, J. Electrochem. Soc. 2021, 168, 030530.
- 20M. Vijayakumar, S. D. Burton, C. Huang, L. Li, Z. Yang, G. L. Graff, J. Liu, J. Hu, M. Skyllas-Kazacos, J. Power Sources 2010, 195, 7709–7717.
- 21M. Vijayakumar, Z. Nie, E. Walter, J. Hu, J. Liu, V. Sprenkle, W. Wang, ChemPlusChem 2015, 80, 428–437.
- 22L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Adv. Energy Mater. 2011, 1, 394–400.
- 23N. Kausar, A. Mousa, M. Skyllas-Kazacos, ChemElectroChem 2016, 3, 276–282.
- 24Y. Yang, Y. Zhang, L. Tang, T. Liu, J. Huang, S. Peng, X. Yang, J. Power Sources 2019, 434, 226719.
- 25X. Zhang, F. Meng, L. Sun, Z. Zhu, D. Chen, L. Wang, Energies 2022, 15, 7829.
- 26T. D. Nguyen, A. Whitehead, N. Wai, G. G. Scherer, A. N. Simonov, Z. J. Xu, D. R. MacFarlane, Small 2024, 20, 2311771.
- 27N. V. Roznyatovskaya, M. Fühl, V. A. Roznyatovsky, J. Noack, P. Fischer, K. Pinkwart, J. Tübke, Energy Technol. 2020, 8, 2000445.
- 28G. Wang, J. Chen, X. Wang, J. Tian, H. Kang, X. Zhu, Y. Zhang, X. Liu, R. Wang, J. Energy Chem. 2014, 23, 73–81.
- 29C. Lu, C. Hu, Z. Chen, P. Wang, F. Feng, G. He, F. Wang, Y. Zhang, J. Z. Liu, X. Zhang, J. Qu, Sci. Adv. 2023, 9, eadf8412.
- 30Y. Zhang, M. Su, X. Yu, Y. Zhou, J. Wang, R. Cao, W. Xu, C. Wang, D. R. Baer, O. Borodin, K. Xu, Y. Wang, X.-L. Wang, Z. Xu, F. Wang, Z. Zhu, Anal. Chem. 2018, 90, 3341–3348.
- 31Y. Zhang, Z. Xing, B. Fan, Z. Ni, F. Wang, X. Hu, Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202215799.
- 32Y. Zhang, W. Zeng, L. Huang, W. Liu, E. Jia, Y. Zhao, F. Wang, Z. Zhu, Anal. Chem. 2019, 91, 7039–7046.
- 33S. Kim, C. Choi, R. Kim, H. G. Kim, H.-T. Kim, RSC Adv. 2016, 6, 96847–96852.
- 34Y. Yang, Y. Zhang, L. Tang, T. Liu, S. Peng, X. Yang, J. Power Sources 2020, 450, 227675.
- 35M. Vijayakumar, L. Li, G. Graff, J. Liu, H. Zhang, Z. Yang, J. Z. Hu, J. Power Sources 2011, 196, 3669–3672.
- 36Y. Yang, Y. Zhang, T. Liu, J. Huang, J. Power Sources 2019, 415, 62–68.
- 37Q. Dai, F. Xing, X. Liu, D. Shi, C. Deng, Z. Zhao, X. Li, Energy Environ. Sci. 2022, 15, 1594–1600.
- 38S. Peng, X. Wu, X. Yan, L. Gao, Y. Zhu, D. Zhang, J. Li, Q. Wang, G. He, J. Mater. Chem. A 2018, 6, 3895–3905.
- 39S. Peng, X. Yan, D. Zhang, X. Wu, Y. Luo, G. He, RSC Adv. 2016, 6, 23479–23488.
- 40T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, et al., J. Chem. Phys. 2020, 152, 194103.
- 41S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 42L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 2009, 30, 2157–2164.
- 43W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 44K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- 45T. Lu, J. Chem. Phys. 2024, 161, 082503.
- 46T. Lu, Q. Chen, Comput. Theoret. Chem. 2021, 1200, 113249.
- 47R. A. Cox, Ü. L. Haldna, K. L. Idler, K. Yates, Can. J. Chem. 1981, 59, 2591–2598.
- 48S. Boghosian, F. Borup, A. Chrissanthopoulos, Catal. Lett. 1997, 48, 145–150.
- 49J. Twu, C.-F. Shih, T.-H. Guo, K.-H. Chen, J. Mater. Chem. 1997, 7, 2273–2277.
- 50K. Tomikawa, H. Kanno, J. Phys. Chem. A 1998, 102, 6082–6088.
- 51K. Kanamori, Y. Ookubo, K. Ino, K. Kawai, H. Michibata, Inorg. Chem. 1991, 30, 3832–3836.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.