Supramolecularly Confined Catalysis in Polyphthalocyanine-Crown-Ether Frameworks Boosts Sulfur Redox Kinetics
Xinming Zhang
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorQing-Xuan Chen
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorWentao Zhang
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorHongyin Hu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorHuimin Wu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorZhaotian Xie
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorXin He
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorYilin Niu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorXianming Deng
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorLi Liu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorProf. Zhenghua Zhang
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lele Peng
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhen Chen
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXinming Zhang
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorQing-Xuan Chen
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorWentao Zhang
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorHongyin Hu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorHuimin Wu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorZhaotian Xie
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorXin He
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorYilin Niu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorXianming Deng
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorLi Liu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorProf. Zhenghua Zhang
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lele Peng
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhen Chen
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Metal phthalocyanines are considered as potent catalysts in lithium–sulfur (Li–S) chemistry. However, their adsorption capability is deficient to inhibit polysulfides from shuttling, which in turn retards the S-redox reaction in the cathode. Here we report flexible, two-dimensional (2D) polyphthalocyanine-crown-ether (PPc-CE) frameworks that provide a supramolecularly confined space created with the single-atom catalytic nickel phthalocyanine nodes and crown-ether linkers as Li host. Electrochemical and theoretical analyses reveal that a cooperative redox catalysis with the enhanced lithiophilicity of PPc-CE-coated carbon nanotubes (PPc-CE/CNTs) boosts Li–S redox kinetics and, meanwhile, suppresses the growth of Li dendrites for the long term. A Li||S cell employing PPc-CE/CNT catalysts delivers a high discharge capacity of 1,363 mAh g−1 at 0.1C and still retains a specific capacity of ∼700 mAh g−1 over 500 cycles at 1C. Our work provides insights into the molecular design of redox catalysts for Li–S batteries based on 2D polymers.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202507612-sup-0001-SuppMat.pdf17 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605–5634.
- 2S. Dörfler, H. Althues, P. Härtel, T. Abendroth, B. Schumm, S. Kaskel, Joule 2020, 4, 539–554.
- 3L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, J. Lu, Joule 2019, 3, 361–386.
- 4Z. Xie, W. Zhang, X. He, Z. Gao, Z. Du, H. Yang, X. Zhang, R. li, Y. He, L. Peng, F. Kang, Energy Storage Mater. 2025, 75, 104046.
- 5Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.
- 6G. Zhou, H. Chen, Y. Cui, Nat. Energy 2022, 7, 312–319.
- 7A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751–11787.
- 8C. X. Bi, N. Yao, X. Y. Li, Q. K. Zhang, X. Chen, X. Q. Zhang, B. Q. Li, J. Q. Huang, Adv. Mater. 2024, 36, 2411197.
- 9M. Jana, R. Xu, X.-B. Cheng, J. S. Yeon, J. M. Park, J.-Q. Huang, Q. Zhang, H. S. Park, Energy Environ. Sci. 2020, 13, 1049–1075.
- 10H. F. Shi, W. Lv, C. Zhang, D. W. Wang, G. W. Ling, Y. B. He, F. Y. Kang, Q. H. Yang, Adv. Funct. Mater. 2018, 28, 1800508.
- 11X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500–506.
- 12Y. Xiang, L. Lu, A. G. P. Kottapalli, Y. Pei, Carbon Energy 2022, 4, 346–398.
- 13Y. Cheng, B. Liu, X. Li, X. He, Z. Sun, W. Zhang, Z. Gao, L. Zhang, X. Chen, Z. Chen, Z. Chen, L. Peng, X. Duan, Carbon Energy 2024, 6, e599.
- 14T. Wang, J. He, Z. Zhu, X. B. Cheng, J. Zhu, B. Lu, Y. Wu, Adv. Mater. 2023, 35, 2303520.
- 15X. Zhang, Z. Liu, W. Liu, J. Han, W. Lv, ACS Appl. Mater. Interfaces 2023, 15, 19002–19010.
- 16B. Li, P. Wang, J. Yuan, N. Song, J. Feng, S. Xiong, B. Xi, Adv. Mater. 2024, 36, 2309324.
- 17X. He, Z. Xie, W. Zhang, Z. Gao, Y. Cheng, X. Zhang, Y.-B. He, F. Kang, L. Peng, ACS Mater. Lett. 2024, 6, 5307–5315.
- 18X. Liu, J. Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 2017, 29, 1601759.
- 19J. S. Yeon, Y. H. Ko, T. H. Park, H. Park, J. Kim, H. S. Park, Energy Environ. Mater. 2022, 5, 555–564.
- 20Z. Liang, J. Shen, X. Xu, F. Li, J. Liu, B. Yuan, Y. Yu, M. Zhu, Adv. Mater. 2022, 34, 2200102.
- 21Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu, H. Huo, Y. Ma, C. Du, P. Zuo, S. Lou, G. Yin, J. Am. Chem. Soc. 2023, 145, 1728–1739.
- 22Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L.-J. Wan, J. Am. Chem. Soc. 2019, 141, 3977–3985.
- 23L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. Duan, Nat. Catal. 2020, 3, 762–770.
- 24H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Nat. Rev. Mater. 2018, 4, 45–60.
- 25C. Dong, C. Zhou, M. Wu, Y. Yu, K. Yu, K. Yan, C. Shen, J. Gu, M. Yan, C. Sun, L. Mai, X. Xu, Adv. Energy Mater. 2023, 13, 2301505.
- 26C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang, K. Yu, C. Shen, J. Gu, K. Yan, A. Zheng, M. Gong, X. Xu, L. Mai, Adv. Mater. 2024, 36, 2407070.
- 27C. Xia, Y. Qiu, Y. Xia, P. Zhu, G. King, X. Zhang, Z. Wu, J. Y. Kim, D. A. Cullen, D. Zheng, P. Li, M. Shakouri, E. Heredia, P. Cui, H. N. Alshareef, Y. Hu, H. Wang, Nat. Chem. 2021, 13, 887–894.
- 28J. Chang, W. Jing, X. Yong, A. Cao, J. Yu, H. Wu, C. Wan, S. Wang, G. I. N. Waterhouse, B. Yang, Z. Tang, X. Duan, S. Lu, Nat. Synth. 2024, 3, 1427–1438.
- 29Y. Kim, W. I. Kim, H. Park, J. S. Kim, H. Cho, J. S. Yeon, J. Kim, Y. J. Kim, J. Lee, H. S. Park, Adv. Energy Mater. 2023, 13, 2204353.
- 30W. I. Kim, J. C. Shin, M. J. Kim, G. Jang, M. Lee, H. S. Park, ACS Energy Lett. 2025, 10, 2410–2418.
- 31J. Hu, L. Peng, W. Qin, W. Su, Y.-P. Cai, K. Li, L. Chen, Mater. Today Energy 2024, 45, 101691.
- 32H. Li, Y. Huang, Y. Zhang, X. Zhang, L. Zhao, W. Bao, X. Cai, K. Zhang, H. Zhao, B. Yi, L. Su, A. K. Cheetham, S. Jiang, J. Xie, Nano Lett. 2022, 22, 2030–2037.
- 33R. A. Borse, Y.-X. Tan, D. Yuan, Y. Wang, Energy Environ. Sci. 2024, 17, 1307–1329.
- 34Z. Cheng, Y. Chen, J. Lian, X. Chen, S. Xiang, B. Chen, Z. Zhang, Angew. Chem. Int. Ed. 2025, 64, e202421726.
- 35S. Guo, Y. Xiao, A. Cherevan, D. Eder, L. Xu, Q. Zeng, Y. Ouyang, Q. Zhang, S. Huang, Mater. Today 2023, 65, 37–46.
- 36R. Razaq, M. M. U. Din, D. R. Småbråten, V. Eyupoglu, S. Janakiram, T. O. Sunde, N. Allahgoli, D. Rettenwander, L. Deng, Adv. Energy Mater. 2024, 14, 2302897.
- 37C. Zhou, Z. Li, X. Xu, L. Mai, Natl. Sci. Rev. 2021, 8, 055.
- 38X. Zhou, Y. Wang, Y. Gu, J. Su, Y. Liu, Y. Yin, S. Yuan, J. Ma, Z. Jin, J.-L. Zuo, Matter 2024, 7, 3069–3082.
- 39M. Shahbaz, M. Saeed, S. Sharif, T. T. R. Afzal, A. Ashraf, B. Riaz, Z. Ghaznavi, S. Shahzad, M. W. Mushtaq, A. Shahzad, Small 2024, 21, 2406613.
- 40C. Zhou, M. Chen, C. Dong, H. Wang, C. Shen, X. Wu, Q. An, G. Chang, X. Xu, L. Mai, Nano Energy 2022, 98, 107332.
- 41S. Lv, X. Ma, S. Ke, Y. Wang, T. Ma, S. Yuan, Z. Jin, J.-L. Zuo, J. Am. Chem. Soc. 2024, 146, 9385–9394.
- 42B. Hu, J. Xu, Z. Fan, C. Xu, S. Han, J. Zhang, L. Ma, B. Ding, Z. Zhuang, Q. Kang, X. Zhang, Adv. Energy Mater. 2023, 13, 2203540.
- 43H. Duan, K. Li, M. Xie, J.-M. Chen, H.-G. Zhou, X. Wu, G.-H. Ning, A. I. Cooper, D. Li, J. Am. Chem. Soc. 2021, 143, 19446–19453.
- 44X. Li, K. Zhang, G. Wang, Y. Yuan, G. Zhan, T. Ghosh, W. P. D. Wong, F. Chen, H.-S. Xu, U. Mirsaidov, K. Xie, J. Lin, K. P. Loh, Nat. Synth. 2022, 1, 382–392.
- 45S. Haldar, M. Wang, P. Bhauriyal, A. Hazra, A. H. Khan, V. Bon, M. A. Isaacs, A. De, L. Shupletsov, T. Boenke, J. Grothe, T. Heine, E. Brunner, X. Feng, R. Dong, A. Schneemann, S. Kaskel, J. Am. Chem. Soc. 2022, 144, 9101–9112.
- 46R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu, S. Yin, X. Liang, Adv. Energy Mater. 2021, 11, 2102819.
- 47T. Sun, J. Xie, W. Guo, D. S. Li, Q. Zhang, Adv. Energy Mater. 2020, 10, 1904199.
- 48Q. Xu, Z. Liu, Y. Jin, X. Yang, T. Sun, T. Zheng, N. Li, Y. Wang, T. Li, K. Wang, J. Jiang, Energy Environ. Sci. 2024, 17, 5451–5460.
- 49L. Yao, C. Ma, L. Sun, D. Zhang, Y. Chen, E. Jin, X. Song, Z. Liang, K.-X. Wang, J. Am. Chem. Soc. 2022, 144, 23534–23542.
- 50X. Yan, F. Wang, X. Su, J. Ren, M. Qi, P. Bao, W. Chen, C. Peng, L. Chen, Adv. Mater. 2023, 35, 2305037.
- 51A. Knebel, J. Caro, Nat. Nanotechnol. 2022, 17, 911–923.
- 52X. Tian, L. Cao, K. Zhang, R. Zhang, X. Li, C. Yin, S. Wang, Angew. Chem. Int. Ed. 2025, 64, e202416864.
- 53H. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, J. Caro, J. Am. Chem. Soc. 2018, 140, 10094–10098.
- 54H. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng, J. Caro, J. Am. Chem. Soc. 2020, 142, 6872–6877.
- 55B. Mishra, A. Alam, A. Chakraborty, B. Kumbhakar, S. Ghosh, P. Pachfule, A. Thomas, Adv. Mater. 2024, 2413118.
- 56B. Han, Y. Jin, B. Chen, W. Zhou, B. Yu, C. Wei, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202114244.
- 57X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871–6913.
- 58H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Chem. Soc. Rev. 2020, 49, 4135–4165.
- 59K. Endo, A. Raza, L. Yao, S. Van Gele, A. Rodríguez-Camargo, H. A. Vignolo-González, L. Grunenberg, B. V. Lotsch, Adv. Mater. 2024, 36, 2313197.
- 60W. Liu, K. Wang, X. Zhan, Z. Liu, X. Yang, Y. Jin, B. Yu, L. Gong, H. Wang, D. Qi, D. Yuan, J. Jiang, J. Am. Chem. Soc. 2023, 145, 8141–8149.
- 61J. Jiang, M. Wu, J. Li, T. Zhou, B. Xu, Z. Shan, Y. Zhong, Z. Ling, Y. Fu, B. Wang, J. Zhu, G. Zhang, Chem. Mater. 2024, 36, 10640–10650.
- 62F. Chen, H. Zheng, Y. Yusran, H. Li, S. Qiu, Q. Fang, Chem. Soc. Rev. 2025, 54, 484–514.
- 63R. H. Choi, J. So, Y. Kim, D. Lee, H. R. Byon, ACS Energy Lett. 2024, 9, 5341–5348.
- 64T. W. Kang, J. H. Lee, J. Lee, J. H. Park, J. H. Shin, J. M. Ju, H. Lee, S. U. Lee, J. H. Kim, Adv. Mater. 2023, 35, 2301308.
- 65Y. Yang, C. Zhang, G. Zhao, Q. An, Z. y. Mei, Y. Sun, Q. Xu, X. Wang, H. Guo, Adv. Energy Mater. 2023, 13, 2300725.
- 66J. He, A. Bhargav, A. Manthiram, Angew. Chem. Int. Ed. 2022, 61, e202116586.
- 67X. Wu, S. Zhang, X. Xu, F. Wen, H. Wang, H. Chen, X. Fan, N. Huang, Angew. Chem. Int. Ed. 2024, 63, e202319355.
- 68L. Yue, X. Wang, L. Chen, D. Shen, Z. Shao, H. Wu, S. Xiao, W. Liang, Y. Yu, Y. Li, Energy Environ. Sci. 2024, 17, 1117–1131.
- 69S. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Chem. Soc. Rev. 2021, 50, 12985–13011.
- 70X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G. E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Nat. Energy 2020, 5, 684–692.
- 71N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S.-T. Lee, Y. Li, Chem 2017, 3, 652–664.
- 72H. Wu, Q. X. Chen, Y. Su, Z. Chen, Angew. Chem. Int. Ed. 2024, 63, e202404838.
- 73Z. Chen, Y. Suzuki, A. Imayoshi, X. Ji, K. V. Rao, Y. Omata, D. Miyajima, E. Sato, A. Nihonyanagi, T. Aida, Nat. Mater. 2022, 21, 253–261.
- 74Q. Zhi, W. Liu, R. Jiang, X. Zhan, Y. Jin, X. Chen, X. Yang, K. Wang, W. Cao, D. Qi, J. Jiang, J. Am. Chem. Soc. 2022, 144, 21328–21336.
- 75Q. Zhi, R. Jiang, X. Yang, Y. Jin, D. Qi, K. Wang, Y. Liu, J. Jiang, Nat. Commun. 2024, 15, 678.
- 76H. Pan, Y. Ren, Q. Wang, J. Hu, Y. Zhang, K. Wang, J. Jiang, Coord. Chem. Rev. 2025, 527, 216404.
- 77X. Yang, L. Gong, K. Wang, S. Ma, W. Liu, B. Li, N. Li, H. Pan, X. Chen, H. Wang, J. Liu, J. Jiang, Adv. Mater. 2022, 34, 2207245.
- 78Q. Liu, Q. Sun, Y. Zhang, H. Li, W. Chen, Y. Zhang, S. Yu, Y. Chen, J. Jiang, Sci. China Chem. 2024, 67, 2092–2101.
- 79X. Yang, Y. Jin, B. Yu, L. Gong, W. Liu, X. Liu, X. Chen, K. Wang, J. Jiang, Sci. China Chem. 2022, 65, 1291–1298.
- 80B. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, J. Am. Chem. Soc. 2021, 143, 7104–7113.
- 81Y. Zang, P. Peng, F. Pei, R.-H. Li, L. Wu, D.-Q. Lu, Y. Zhang, K. Huang, Y. Shen, Y.-H. Huang, Y.-Q. Lan, Natl. Sci. Rev. 2025, 12, 443.
- 82H. Wang, H. Cheng, D. Li, F. Li, Y. Wei, K. Huang, B. Jiang, H. Xu, Y. Huang, Adv. Energy Mater. 2023, 13, 2204425.
- 83Y. Zhong, Q. Wang, S.-M. Bak, S. Hwang, Y. Du, H. Wang, J. Am. Chem. Soc. 2023, 145, 7390–7396.
- 84Z. Lu, Y. Guo, S. Zhang, S. Wu, R. Meng, S. Hong, J. Li, H. Xue, B. Zhang, D. Fan, Y. Zhang, C. Zhang, W. Lv, Q. H. Yang, Adv. Mater. 2021, 33, 2101745.
- 85H. Wang, J. He, J. Liu, S. Qi, M. Wu, J. Wen, Y. Chen, Y. Feng, J. Ma, Adv. Funct. Mater. 2021, 31, 2002578.
- 86Q. Zhang, Y. Li, E. T. Poh, Z. Xing, M. Zhang, M. Wang, Z. Sun, J. Pan, S. V. C. Vummaleti, J. Zhang, W. Chen, Adv. Energy Mater. 2023, 13, 2301748.
- 87Z. Wang, H. Zhu, J. Jiang, M. Dong, F. Meng, J. Ke, H. Ji, L. Xu, G. Li, Y. Fu, Q. Liu, Z. Xue, Q. Ji, J. Zhu, S. Lan, Angew. Chem. Int. Ed. 2024, e202410823.
- 88Y. Zhang, X. Guan, Z. Meng, H.-L. Jiang, J. Am. Chem. Soc. 2025, 147, 3776–3785.
- 89U. K. Ghorai, S. Paul, B. Ghorai, A. Adalder, S. Kapse, R. Thapa, A. Nagendra, A. Gain, ACS Nano 2021, 15, 5230–5239.
- 90S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji, L. Duan, Appl. Catal. B 2021, 284, 119739.
- 91J. Li, F. Zhang, X. Zhan, H. Guo, H. Zhang, W.-Y. Zan, Z. Sun, X.-M. Zhang, Chin. J. Catal. 2023, 48, 117–126.
- 92X. Shao, R. Gan, Y. Rao, T. T. T. Nga, M. Liang, C.-L. Dong, C. Ma, J. Y. Lee, H. Li, H. Lee, ACS Nano 2024, 18, 14742–14753.
- 93C. Shen, Y. Li, M. Gong, C. Zhou, Q. An, X. Xu, L. Mai, ACS Appl. Mater. Interfaces 2021, 13, 60046–60053.
- 94J. Kim, H. Shin, D. J. Yoo, S. Kang, S. Y. Chung, K. Char, J. W. Choi, Adv. Funct. Mater. 2021, 31, 2106679.
- 95X. Wang, X. Zhang, Y. Zhang, J. Wang, J. Liu, S. Li, X. Liu, M. Jin, L. Zhao, G. Li, X. Wang, Adv. Energy Mater. 2024, 14, 2400926.
- 96M. Xu, Q. Zhu, Y. Li, Y. Gao, N. Sun, B. Xu, Energy Environ. Sci. 2024, 17, 7735–7748.
- 97H. Li, M. Chuai, X. Xiao, Y. Jia, B. Chen, C. Li, Z. Piao, Z. Lao, M. Zhang, R. Gao, B. Zhang, Z. Han, J. Yang, G. Zhou, J. Am. Chem. Soc. 2023, 145, 22516–22526.
- 98X. Zhao, Y. Xu, T. Qiu, Y. Zhang, W. Liu, C. Chen, M. J. Biggs, C. Hu, Energy Storage Mater. 2024, 72, 103728.
- 99Y. Li, Y. Zeng, Y. Chen, D. Luan, S. Gao, X. W. Lou, Angew. Chem. Int. Ed. 2022, 61, e202212680.
- 100S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng, X. Wu, G. Zhou, Adv. Mater. 2023, 35, 2209028.
- 101A. Liu, G. Liu, C. Zhu, H. Zhu, E. Fortunato, R. Martins, F. Shan, Adv. Electron. Mater. 2016, 2, 1600140.
- 102H. Song, K. Münch, X. Liu, K. Shen, R. Zhang, T. Weintraut, Y. Yusim, D. Jiang, X. Hong, J. Meng, Y. Liu, M. He, Y. Li, P. Henkel, T. Brezesinski, J. Janek, Q. Pang, Nature 2025, 637, 846–853.
- 103D. Wang, B. Gwalani, D. Wierzbicki, V. Singh, L.-J. Jhang, T. Rojas, R. Kou, M. Liao, L. Ye, H. Jiang, S. Shan, A. Silver, A. T. Ngo, Y. Du, X. Li, D. Wang, Nat. Mater. 2025, 24, 243–251.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.