Concurrent Production of Glycolic Acid via Anode Valorization of Plastic Paired With Cathode Upcycling of Biomass Derivative
Sailei Kang
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
These authors contributed equally to this work.
Search for more papers by this authorWenfang Yuan
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
Songshan Lake Materials Laboratory, Guangdong, 523000 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xuyun Guo
School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, D02PN40 Ireland
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Yu Zhang
College of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing, 211167 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorDr. Jian Shang
Low-Dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorPeinuo Yang
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
Search for more papers by this authorYingxin Ma
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
Search for more papers by this authorProf. Valeria Nicolosi
School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, D02PN40 Ireland
Search for more papers by this authorCorresponding Author
Dr. Lejuan Cai
Songshan Lake Materials Laboratory, Guangdong, 523000 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Bocheng Qiu
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorSailei Kang
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
These authors contributed equally to this work.
Search for more papers by this authorWenfang Yuan
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
Songshan Lake Materials Laboratory, Guangdong, 523000 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xuyun Guo
School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, D02PN40 Ireland
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Yu Zhang
College of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing, 211167 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorDr. Jian Shang
Low-Dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorPeinuo Yang
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
Search for more papers by this authorYingxin Ma
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
Search for more papers by this authorProf. Valeria Nicolosi
School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, D02PN40 Ireland
Search for more papers by this authorCorresponding Author
Dr. Lejuan Cai
Songshan Lake Materials Laboratory, Guangdong, 523000 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Bocheng Qiu
Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Electrochemical upcycling of polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into valuable chemicals, such as glycolic acid (GA), provides a sustainable route for reclaiming the carbon resource in plastic wastes. However, valorization of EG to GA is realized solely via anodic oxidation, which is typically accompanied by the generation of low-value hydrogen at the cathode. Here, we develop a GA production system that combines anodic and cathodic GA production via oxidation of PET-derived EG paired with reduction of biomass-derived oxalic acid, which is made possible by the discovery of a robust PdBi alloy anode and earth-abundant TiO2 cathode. Building on the theoretical understanding and experimental demonstration of anti-CO poisoning on the PdBi anode and temperature-dependent GA electrosynthesis on the TiO2 cathode, our integrated electrochemical system achieves a total Faradaic efficiency of 182% for GA production. This proof-of-concept electrochemical coupling strategy paves the way for high-efficiency utilization of surplus plastic-/biomass-derived feedstocks via renewable-electricity-driven electrocatalysis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ange202504993-sup-0001-SupMat.docx5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X.-L. Li, R. W. Clarke, J.-Y. Jiang, T.-Q. Xu, E. Y. X. Chen, Nat. Chem. 2023, 15, 278–285.
- 2J. Li, H. Peng, K. Liu, Q. Zhao, Adv. Mater. 2024, 36, 2309406.
- 3Y. Bai, B. Liu, J. Li, M. Li, Z. Yao, L. Dong, D. Rao, P. Zhang, X. Cao, L. F. Villalobos, Sci. Adv. 2023, 9, eadg6134.
- 4Y. Liu, Q. Zhong, P. Xu, H. Huang, F. Yang, M. Cao, L. He, Q. Zhang, J. Chen, Matter 2022, 5, 1305–1317.
- 5B. Sun, J. Zhang, M. Wang, S. Yu, Y. Xu, S. Tian, Z. Gao, D. Xiao, G. Liu, W. Zhou, Nat. Sustain. 2023, 6, 712–719.
- 6X. L. Li, R. W. Clarke, H. Y. An, R. R. Gowda, J. Y. Jiang, T. Q. Xu, E. Y. X. Chen, Angew. Chem. Int. Ed. 2023, 62, e202303791.
- 7X. Zhang, W. Guo, C. Zhang, X. Zhang, Nat. Commun. 2023, 14, 5423.
- 8S. Kaabel, J. D. Therien, C. E. Deschênes, D. Duncan, T. Friščić, K. Auclair, Proc. Natl. Acad. Sci. USA 2021, 118, e2026452118.
- 9H. Lu, D. J. Diaz, N. J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D. J. Acosta, B. R. Alexander, H. O. Cole, Y. Zhang, Nature 2022, 604, 662–667.
- 10L. Shi, P. Liu, Z. Tan, W. Zhao, J. Gao, Q. Gu, H. Ma, H. Liu, L. Zhu, Angew. Chem. Int. Ed. 2023, 62, e202218390.
- 11Y. Ma, Y. Zhang, W. Yuan, M. Du, S. Kang, B. Qiu, EES Catal 2023, 1, 892–920.
- 12H. Zhou, Y. Ren, Z. Li, M. Xu, Y. Wang, R. Ge, X. Kong, L. Zheng, H. Duan, Nat. Commun. 2021, 12, 4679.
- 13H. Zhang, Y. Wang, X. Li, K. Deng, H. Yu, Y. Xu, H. Wang, Z. Wang, L. Wang, Appl. Catal. B: Environ. 2024, 340, 123236.
- 14S. Xia, F. Wu, Q. Liu, W. Gao, C. Guo, H. Wei, A. Hussain, Y. Zhang, G. Xu, W. Niu, Small 2024, 20, 2400939.
- 15S. Kang, X. Guo, D. Xing, W. Yuan, J. Shang, V. Nicolosi, N. Zhang, B. Qiu, Small 2024, 20, 2406068.
- 16T. Ren, Z. Yu, H. Yu, K. Deng, Z. Wang, X. Li, H. Wang, L. Wang, Y. Xu, ACS Nano 2023, 17, 12422–12432.
- 17F. W. S. Lucas, R. G. Grim, S. A. Tacey, C. A. Downes, J. Hasse, A. M. Roman, C. A. Farberow, J. A. Schaidle, A. Holewinski, ACS Energy Lett. 2021, 6, 1205–1270.
- 18D. Si, B. Xiong, L. Chen, J. Shi, Chem Catal. 2021, 1, 941–955.
- 19Y. Wang, K. Liu, F. Liu, C. Liu, R. Shi, Y. Chen, Green Chem. 2023, 25, 5872–5877.
- 20K. Liu, X. Gao, C.-X. Liu, R. Shi, E. C. M. Tse, F. Liu, Y. Chen, Adv. Energy Mater. 2024, 14, 2304065.
- 21H. Sheng, A. N. Janes, R. D. Ross, H. Hofstetter, K. Lee, J. Schmidt, S. Jin, Nat. Catal. 2022, 5, 716–725.
- 22T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen, S. Du, Y. Zhou, B. Zhou, D. Wang, C. Xie, Nat. Catal. 2022, 5, 66–73.
- 23S. Bhattacharjee, M. Rahaman, V. Andrei, M. Miller, S. Rodríguez-Jiménez, E. Lam, C. Pornrungroj, E. Reisner, Nat. Synth 2023, 2, 182–192.
- 24J. Wang, X. Li, M. Wang, T. Zhang, X. Chai, J. Lu, T. Wang, Y. Zhao, D. Ma, ACS Catal. 2022, 12, 6722–6728.
- 25A. Kormányos, A. Szirmai, B. Endrődi, C. Janáky, ACS Catal. 2024, 14, 6503–6512.
- 26M. A. Bajada, S. Roy, J. Warnan, K. Abdiaziz, A. Wagner, M. M. Roessler, E. Reisner, Angew. Chem. Int. Ed. 2020, 59, 15633–15641.
- 27J. Kim, S. Kim, J. Lim, I. Moon, J. Kim, J. Cleaner Prod. 2022, 380, 134988.
- 28E. Schuler, M. Demetriou, N. R. Shiju, G.-J. M. Gruter, ChemSusChem 2021, 14, 3636–3664.
- 29Y. Ma, W. Chen, W. Yuan, Z. Chen, M. Du, L. Cai, W. Wang, M. Xing, B. Qiu, Adv. Energy Mater. 2025, 15, 2404877.
- 30Y. Cheng, W. Xu, J. Hou, P. Kang, ACS Catal. 2023, 13, 3676–3683.
- 31M. Yamauchi, S. Hata, H. Eguchi, S. Kitano, T. Fukushima, M. Higashi, M. Sadakiyo, K. Kato, Catal. Sci. Technol. 2019, 9, 6561–6565.
- 32X. Zhou, M. Zha, J. Cao, H. Yan, X. Feng, D. Chen, C. Yang, ACS Sustainable Chem. Eng. 2021, 9, 10948–10962.
- 33B. T. Mei, K. Wenderich, B. Nieuweweme, G. Mul, ECS Meet. Abstr. 2020, MA2020-01, 1544.
10.1149/MA2020-01371544mtgabs Google Scholar
- 34G. Han, G. Li, Y. Sun, Nat. Catal. 2023, 6, 224–233.
- 35X. Wang, M. Chu, M. Wang, Q. Zhong, J. Chen, Z. Wang, M. Cao, H. Yang, T. Cheng, J. Chen, T.-K. Sham, Q. Zhang, ACS Nano 2022, 16, 16869–16879.
- 36H. Wang, L. Jiao, L. Zheng, Q. Fang, Y. Qin, X. Luo, X. Wei, L. Hu, W. Gu, J. Wen, Adv. Funct. Mater. 2021, 31, 2103465.
- 37M. Du, R. Xue, W. Yuan, Y. Cheng, Z. Cui, W. Dong, B. Qiu, Nano Lett. 2024, 24, 9768–9775.
- 38H. Liao, J. Zhu, Y. Hou, Nanoscale 2014, 6, 1049–1055.
- 39Y. Ma, X. Guo, M. Du, S. Kang, W. Dong, V. Nicolosi, Z. Cui, Y. Zhang, B. Qiu, Green Chem. 2024, 26, 3995–4004.
- 40J. Wu, X. Cui, J. Fan, J. Zhao, Q. Zhang, G. Jia, Q. Wu, D. Zhang, C. Hou, S. Xu, ACS Energy Lett. 2021, 6, 1912–1919.
- 41K. Shi, D. Si, X. Teng, L. Chen, J. Shi, Nat. Commun. 2024, 15, 2899.
- 42Y. Yan, H. Zhou, S.-M. Xu, J. Yang, P. Hao, X. Cai, Y. Ren, M. Xu, X. Kong, M. Shao, J. Am. Chem. Soc. 2023, 145, 6144–6155.
- 43F. Liu, X. Gao, R. Shi, Z. Guo, E. C. Tse, Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202300094.
- 44M. Simões, S. Baranton, C. Coutanceau, Appl. Catal. B Environ. 2011, 110, 40–49.
- 45M. Li, Z. Zhao, W. Zhang, M. Luo, L. Tao, Y. Sun, Z. Xia, Y. Chao, K. Yin, Q. Zhang, Adv. Mater. 2021, 33, 2103762.
- 46X. Liu, X. He, D. Xiong, G. Wang, Z. Tu, D. Wu, J. Wang, J. Gu, Z. Chen, ACS Catal. 2024, 14, 5366–5376.
- 47E. G. Mahoney, W. Sheng, M. Cheng, K. X. Lee, Y. Yan, J. G. Chen, J. Power Sources 2016, 305, 89–96.
- 48W. Xu, Y. Cheng, J. Hou, P. Kang, ChemCatChem 2023, 15, e202201687.
- 49J. E. Kim, J. H. Jang, K. M. Lee, M. Balamurugan, Y. I. Jo, M. Y. Lee, S. Choi, S. W. Im, K. T. Nam, Angew. Chem. Int. Ed. 2021, 60, 21943–21951.
- 50T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, Angew. Chem. Int. Ed. 2019, 58, 18449–18453.
- 51T. Wu, H. Zhao, X. Zhu, Z. Xing, Q. Liu, T. Liu, S. Gao, S. Lu, G. Chen, A. M. Asiri, Adv. Mater. 2020, 32, 2000299.
- 52Y. Qian, F. M. Zhao, Q. Q. Qiu, C. A. Ma, Adv. Mater. Res. 2014, 936, 965–969.
- 53T. Fukushima, M. Yamauchi, Chem. Commun. 2019, 55, 14721–14724.
- 54B. Qiu, Y. Deng, Q. Li, B. Shen, M. Xing, J. Zhang, J. Phys. Chem. C 2016, 120, 12125–12131.
- 55F. Zhao, F. Yan, Y. Qian, Y. Xu, J. Electroanal. Chem. 2013, 698, 31–38.
- 56J. Luo, D. A. Vermaas, D. Bi, A. Hagfeldt, W. A. Smith, M. Grätzel, Adv. Energy Mater. 2016, 6, 1600100.
- 57A. Wu, J. Lv, X. Xuan, J. Zhang, A. Cao, M. Wang, X. Y. Wu, Q. Liu, Y. Zhong, W. Sun, Adv. Energy Mater. 2023, 13, 2204231.
- 58D. A. Vermaas, S. Wiegman, T. Nagaki, W. A. Smith, Sustain. Energy Fuels 2018, 2, 2006–2015.
- 59S. Bhattacharjee, C. Guo, E. Lam, J. M. Holstein, M. Rangel Pereira, C. M. Pichler, C. Pornrungroj, M. Rahaman, T. Uekert, F. Hollfelder, E. Reisner, J. Am. Chem. Soc. 2023, 145, 20355–20364.
- 60M. Li, S. Zhang, ACS Catal. 2024, 14, 2949–2958.
- 61M. Li, Y. Wu, B.-H. Zhao, C. Cheng, J. Zhao, C. Liu, B. Zhang, Nat. Catal 2023, 6, 906–915.
- 62M. Du, Y. Zhang, S. Kang, C. Xu, Y. Ma, L. Cai, Y. Zhu, Y. Chai, B. Qiu, Small 2023, 19, 2303693.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.