Enzyme Induced Solid-Like Condensates Formation of Engineered Peptide in Living Cells for Prostate Cancer Inhibition
Ying Li
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Search for more papers by this authorDr. Tengyan Xu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Search for more papers by this authorYaoting Li
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Search for more papers by this authorCorresponding Author
Dr. Huaimin Wang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
E-mail: [email protected]
Search for more papers by this authorYing Li
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Search for more papers by this authorDr. Tengyan Xu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Search for more papers by this authorYaoting Li
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Search for more papers by this authorCorresponding Author
Dr. Huaimin Wang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang, 310024 China
Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
E-mail: [email protected]
Search for more papers by this authorAbstract
This work describes the rational design and synthesis of hepsin-recognized amphiphilic-branched peptides (DMN-SIPL) that can form solid condensates through liquid–liquid phase separation (LLPS) upon enzymatic reaction. The peptide forms solid-like condensates both in vitro and in living cells, triggered by type-II membrane-associated serine peptidase, hepsin, whose overexpression determines prostate cancer progression. Specifically, integrating self-assembly, hepsin hydrolysis, and hepsin-binding domain generates a branched substrate that acts as a precursor for enzyme-induced LLPS. Upon binding hepsin on the cell membrane, DMN-SIPL forms condensates initiated by hepsin-induced self-assembly. The prostate cancer cells then uptake these condensates via lipid raft-mediated endocytosis. The entrapped hepsin in the condensates further hydrolyzes the DMN-SIPL to stabilize the intracellular condensates. Structure–activity relationship reveals the importance of enzyme-binding motif, enzyme-recognized motif, and the self-assembly motif. Mechanistic studies indicate that the resulting solid-like condensates modulate cancer cell metabolism by inhibiting hepsin upstream protein activation and downstream signal transduction, ultimately inducing cancer cell growth inhibition selectively. As a first example, this work investigates enzymatic LLPS condensate formation in living cells, paving the way to generate functional synthetic biomolecular condensates through LLPS for biomedical applications.
Conflict of Interests
The authors has applied a patent based on this work.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202504958-sup-0001-SuppMat.docx7.3 MB | Supporting Information |
ange202504958-sup-0002-SuppMat.avi1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Tang, Nat. Methods 2019, 16, 18–18.
- 2Z. Xu, W. Wang, Y. Cao, B. Xue, Supramol. Mater. 2023, 2, 100049.
10.1016/j.supmat.2023.100049 Google Scholar
- 3S. Alberti, A. A. Hyman, Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213.
- 4Y. Dai, L. You, A. Chilkoti, Nat. Rev. Bioeng. 2023, 1, 466–480.
- 5J. L. Silva, D. Foguel, V. F. Ferreira, T. C. R. G. Vieira, M. A. Marques, G. D. S. Ferretti, T. F. Outeiro, Y. Cordeiro, G. A. P. de Oliveira, Chem. Rev. 2023, 123, 9094–9138.
- 6S. Alberti, A. Gladfelter, T. Mittag, Cell 2019, 176, 419–434.
- 7J. B. Woodruff, A. A. Hyman, E. Boke, Trends Biochem. Sci. 2018, 43, 81–94.
- 8Z. Wang, J. Lou, H. Zhang, J. Biol. Chem. 2022, 298, 101782.
- 9S. Yu, W. Chen, G. Liu, B. Flores, E. L. DeWolf, B. Fan, Y. Xiang, M. J. Webber, J. Am. Chem. Soc. 2024, 146, 7498–7505.
- 10J. Wang, L. Hu, H. Zhang, Y. Fang, T. Wang, H. Wang, Adv. Mater. 2022, 34, 2104704.
- 11C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher, A. A. Hyman, Science 2009, 324, 1729–1732.
- 12S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298.
- 13A. A. Hyman, K. Simons, Science 2012, 337, 1047–1049.
- 14E. B. Wilson, Science 1899, 10, 33–45.
- 15S. Mehta, J. Zhang, Nat. Rev. Cancer 2022, 22, 239–252.
- 16B. Van Treeck, R. Parker, Cell 2018, 174, 791–802.
- 17A. G. Larson, D. Elnatan, M. M. Keenen, M. J. Trnka, J. B. Johnston, A. L. Burlingame, D. A. Agard, S. Redding, G. J. Narlikar, Nature 2017, 547, 236–240.
- 18P. Li, S. Banjade, H.-C. Cheng, S. Kim, B. Chen, L. Guo, M. Llaguno, J. V. Hollingsworth, D. S. King, S. F. Banani, P. S. Russo, Q.-X. Jiang, B. T. Nixon, M. K. Rosen, Nature 2012, 483, 336–340.
- 19M. Du, Z. J. Chen, Science 2018, 361, 704–709.
- 20M. Abbas, W. P. Lipiński, J. Wang, E. Spruijt, Chem. Soc. Rev. 2021, 50, 3690–3705.
- 21A. Jain, S. Kassem, R. S. Fisher, B. Wang, T.-D. Li, T. Wang, Y. He, S. Elbaum-Garfinkle, R. V. Ulijn, J. Am. Chem. Soc. 2022, 144, 15002–15007.
- 22Q. Guo, G. Zou, X. Qian, S. Chen, H. Gao, J. Yu, Nat. Commun. 2022, 13, 5771.
- 23M. Abbas, W. P. Lipiński, K. K. Nakashima, W. T. Huck, E. Spruijt, Nat. Chem. 2021, 13, 1046–1054.
- 24A. Baruch Leshem, S. Sloan-Dennison, T. Massarano, S. Ben-David, D. Graham, K. Faulds, H. E. Gottlieb, J. H. Chill, A. Lampel, Nat. Commun. 2023, 14, 421.
- 25J. Liu, F. Zhorabek, X. Dai, J. Huang, Y. Chau, ACS Cent. Sci. 2022, 8, 493–500.
- 26S. Cao, T. Ivanov, J. Heuer, C. T. J. Ferguson, K. Landfester, L. Caire da Silva, Nat. Commun. 2024, 15, 39.
- 27Y. Sun, S. Y. Lau, Z. W. Lim, S. C. Chang, F. Ghadessy, A. Partridge, A. Miserez, Nat. Chem. 2022, 14, 274–283.
- 28R. Kubota, S. Torigoe, I. Hamachi, J. Am. Chem. Soc. 2022, 144, 15155–15164.
- 29J. Liu, E. Spruijt, A. Miserez, R. Langer, Nat. Rev. Mater. 2023, 8, 139–141.
- 30H. Chen, Y. Bao, X. Li, F. Chen, R. Sugimura, X. Zeng, J. Xia, Angew. Chem. Int. Ed. 2024, 63, e202410566.
- 31Y. Shin, J. Berry, N. Pannucci, M. P. Haataja, J. E. Toettcher, C. P. Brangwynne, Cell 2017, 168, 159–171.e14.
- 32H. Nakamura, A. A. Lee, A. S. Afshar, S. Watanabe, E. Rho, S. Razavi, A. Suarez, Y.-C. Lin, M. Tanigawa, B. Huang, R. Derose, D. Bobb, W. Hong, S. B. Gabelli, J. Goutsias, T. Inoue, Nat. Mater. 2018, 17, 79–89.
- 33Z. Feng, H. Wang, B. Xu, J. Am. Chem. Soc. 2018, 140, 16433–16437.
- 34Y. Ding, D. Zheng, L. Xie, X. Zhang, Z. Zhang, L. Wang, Z.-W. Hu, Z. Yang, J. Am. Chem. Soc. 2023, 145, 4366–4371.
- 35J. Kim, S. Lee, Y. Kim, M. Choi, I. Lee, E. Kim, C. G. Yoon, K. Pu, H. Kang, J. S. Kim, Nat. Rev. Mater. 2023, 8, 710–725.
- 36S. Kim, J.-B. Chae, D. Kim, C.-W. Park, Y. Sim, H. Lee, G. Park, J. Lee, S. Hong, B. Jana, C. Kim, H. Chung, J.-H. Ryu, J. Am. Chem. Soc. 2023, 145, 21991–22008.
- 37S. Li, L. Wang, S. Sun, Q. Wu, The FEBS J. 2021, 288, 5252–5264.
- 38L. Lu, A. Cole, D. Huang, Q. Wang, Z. Guo, W. Yang, J. Lu, Biomolecules 2022, 12, 203.
- 39T. A. Tervonen, S. M. Pant, D. Belitškin, J. I. Englund, K. Närhi, C. Haglund, P. E. Kovanen, E. W. Verschuren, J. Klefström, Cancer Res. 2021, 81, 1513–1527.
- 40M. H. Kang, M. J. Park, H. J. Yoo, K. Y. hyuk, S. G. Lee, S. R. Kim, D. W. Yeom, M. J. Kang, Y. W. Choi, Eur. J. Pharm. Biopharm. 2014, 87, 489–499.
- 41A. S. Murray, F. A. Varela, K. List, Biol. Chem. 2016, 397, 815–826.
- 42O. Klezovitch, J. Chevillet, J. Mirosevich, R. L. Roberts, R. J. Matusik, V. Vasioukhin, Cancer Cell 2004, 6, 185–195.
- 43L. Hu, Y. Li, X. Lin, Y. Huo, H. Zhang, H. Wang, Angew. Chem. Int. Ed. 2021, 60, 21807–21816.
- 44H. Liu, Z. Song, Y. Zhang, B. Wu, D. Chen, Z. Zhou, H. Zhang, S. Li, X. Feng, J. Huang, H. Wang, Nat. Mater. 2025, 1–12, https://doi.org/10.1038/s41563-025-02164-3.
- 45L. C. Nelemans, L. Gurevich, Materials 2020, 13, 366.
- 46R. Mout, M. Ray, G. Yesilbag Tonga, Y.-W. Lee, T. Tay, K. Sasaki, V. M. Rotello, ACS Nano 2017, 11, 2452–2458.
- 47V. Bandmann, A. S. Mirsanaye, J. Schäfer, G. Thiel, T. Holstein, M. Mikosch-Wersching, Sci. Rep. 2019, 9, 12999.
- 48M. Koivusalo, C. Welch, H. Hayashi, C. C. Scott, M. Kim, T. Alexander, N. Touret, K. M. Hahn, S. Grinstein, J. Cell Biol. 2010, 188, 547–563.
- 49P. Panja, N. R. Jana, J. Phys. Chem. B 2020, 124, 5323–5333.
- 50K. N. Rao, R. C. Anita, R. Sangeetha, L. Anirudha, H. Subramnay, Worldwide Protein Data Bank, 2016.
- 51A. Molliex, J. Temirov, J. Lee, M. Coughlin, A. P. Kanagaraj, H. J. Kim, T. Mittag, J. P. Taylor, Cell 2015, 163, 123–133.
- 52A. Patel, H. O. Lee, L. Jawerth, S. Maharana, M. Jahnel, M. Y. Hein, S. Stoynov, J. Mahamid, S. Saha, T. M. Franzmann, A. Pozniakovski, I. Poser, N. Maghelli, L. A. Royer, M. Weigert, E. W. Myers, S. Grill, D. Drechsel, A. A. Hyman, S. Alberti, Cell 2015, 162, 1066–1077.
- 53C. N. Hernandez-Candia, B. R. Brady, E. Harrison, C. L. Tucker, Nat. Chem. Biol. 2024, 20, 452–462.
- 54W. Ming-Hai, Z. Ruiwen, Z. Yong-Qing, Y. Hang-Ping, J. Biomed. Res. 2013, 27, 345–356.
- 55R. Ganesan, G. A. Kolumam, S. J. Lin, M.-H. Xie, L. Santell, T. D. Wu, R. A. Lazarus, A. Chaudhuri, D. Kirchhofer, Mol. Cancer Res. 2011, 9, 1175–1186.
- 56H.-P. Yao, Y.-Q. Zhou, R. Zhang, M.-H. Wang, Nat. Rev. Cancer 2013, 13, 466–481.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.