Interface Engineering of Branched PdCoPx Nanostructures for High-Performance Lithium–Oxygen Batteries
Zhiyuan Xu
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorYu Zhang
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorHong Yu
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
These authors contributed equally to this work.
Search for more papers by this authorZewen Zhuang
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorXingdong Wang
Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083 China
Search for more papers by this authorJiaqi Zhang
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXin Tan
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorChang Chen
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Dr. Xin Chen
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Qiuhua Yuan
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Chen Chen
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhiyuan Xu
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorYu Zhang
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorHong Yu
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
These authors contributed equally to this work.
Search for more papers by this authorZewen Zhuang
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorXingdong Wang
Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083 China
Search for more papers by this authorJiaqi Zhang
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXin Tan
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 China
Search for more papers by this authorChang Chen
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Dr. Xin Chen
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Qiuhua Yuan
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Chen Chen
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing advanced cathode materials plays a positive role in lowering the charge/discharge overpotentials and improving the cycling performance of lithium–oxygen batteries (LOBs). Here we report a direct synthesis strategy to prepare high-dimensional branched PdCoPx series nanostructures, in which the Pd atoms are well dispersed within cobalt phosphide, leading to rich Pd─Co─P interfaces and evoking a prominent ligand effect between the elements. The Pd1Co2Px exhibits an excellent and stable activity for oxygen reduction reaction (ORR) in alkaline media, with a mass activity of 1.46 A mgPd−1, far exceeding that of commercial Pd/C (0.12 A mgPd−1) and Pt/C (0.17 A mgPt−1). Using Pd1Co2Px as the cathode, the resulting LOB shows an ultralow discharge/charge overpotential of 0.40 V and could run stably for over 240 cycles, which is a significant improvement compared with the counterparts using CoPx and Pd/C cathodes. Experimental and density functional theory (DFT) calculation results indicate that the dispersed Pd atoms could significantly enhance the ORR kinetics, and the Pd─Co─P interfaces could direct the two-dimensional growth of Li2O2, thereby facilitating the formation of more easily decomposable film-like Li2O2 products. This feature successfully elevates both the charge and discharge performances, as well as the stability of the LOB.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202504924-sup-0001-SuppMat.docx4.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Ahn, C. Zor, S. Yang, M. Lagnoni, D. Dewar, T. Nimmo, C. Chau, M. Jenkins, A. J. Kibler, A. Pateman, G. J. Rees, X. Gao, P. Adamson, N. Grobert, A. Bertei, L. R. Johnson, P. G. Bruce, Nat. Chem. 2023, 15, 1022–1029.
- 2H. Gao, B. M. Gallant, Nat. Rev. Chem. 2020, 4, 566–583.
- 3Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279–289.
- 4Y. Li, J. Lu, ACS Energy Lett. 2017, 2, 1370–1377.
- 5W.-J. Kwak, Rosy, D. S., C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y.-K. Sun, A. A. Frimer, M. Noked, S. A. Freunberger, D. Aurbach, Chem. Rev. 2020, 120, 6626–6683.
- 6Y.-C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, Electrochem. Solid-State Lett. 2010, 13, A69.
- 7Z. Liang, W. Wang, Y.-C. Lu, Joule 2022, 6, 2458–2473.
- 8C. Xia, C. Y. Kwok, L. F. Nazar, Science 2018, 361, 777–781.
- 9T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P. G. Bruce, J. Am. Chem. Soc. 2006, 128, 1390–1393.
- 10A. C. Luntz, B. D. McCloskey, Chem. Rev. 2014, 114, 11721–11750.
- 11A. Manthiram, L. Li, Adv. Energy Mater 2015, 5, 1401302.
- 12Y. Zhang, S. Zhang, J. Ma, X. Chen, C. Nan, C. Chen, Angew. Chem. Int. Ed. 2023, 62, e202218926.
- 13E. J. Askins, M. R. Zoric, M. Li, R. Amine, K. Amine, L. A. Curtiss, K. D. Glusac, Nat. Chem. 2023, 15, 1247–1254.
- 14Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li, H. Tan, J. Zhou, W. Zhang, H. Li, S. Guo, Angew. Chem. Int. Ed. 2021, 60, 26592–26598.
- 15M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, J. Y. Ma, F. Lin, D. Su, G. Lu, S. Guo, Nature 2019, 574, 81–85.
- 16M. Balaish, J.-W. Jung, I.-D. Kim, Y. Ein-Eli, Adv. Funct. Mater. 2020, 30, 1808303.
- 17H. Wang, X. Wang, M. Li, L. Zheng, D. Guan, X. Huang, J. Xu, J. Yu, Adv. Mater. 2020, 32, 2002559.
- 18Y. Hou, J. Wang, J. Liu, C. Hou, Z. Xiu, Y. Fan, L. Zhao, Y. Zhai, H. Li, J. Zeng, X. Gao, S. Zhou, D. Li, Y. Li, F. Dang, K. Liang, P. Chen, C. Li, D. Zhao, B. Kong, Adv. Energy Mater 2019, 9, 1901751.
- 19C. Dang, Q. Mu, X. Xie, X. Sun, X. Yang, Y. Zhang, S. Maganti, M. Huang, Q. Jiang, I. Seok, W. Du, C. Hou, Adv. Compos. Hybrid Mater. 2022, 5, 606–626.
- 20Y. Li, Z. Dong, L. Jiao, Adv. Energy Mater 2020, 10, 1902104.
- 21Z. Pu, T. Liu, I. S. Amiinu, R. Cheng, P. Wang, C. Zhang, P. Ji, W. Hu, J. Liu, S. Mu, Adv. Funct. Mater. 2020, 30, 2004009.
- 22Y. Shi, M. Li, Y. Yu, B. Zhang, Energ Environ. Sci. 2020, 13, 4564–4582.
- 23H.-b. Huang, S.-h. Luo, C.-l. Liu, T.-f. Yi, Y.-c. Zhai, ACS Appl. Mater. Interfaces 2018, 10, 21281–21290.
- 24A. Kondori, Z. Jiang, M. Esmaeilirad, M. Tamadoni Saray, A. Kakekhani, K. Kucuk, P. Navarro Munoz Delgado, S. Maghsoudipour, J. Hayes, C. S. Johnson, C. U. Segre, R. Shahbazian-Yassar, A. M. Rappe, M. Asadi, Adv. Mater. 2020, 32, 2004028.
- 25P. Tan, Z. H. Wei, W. Shyy, T. S. Zhao, X. B. Zhu, Energ Environ. Sci. 2016, 9, 1783–1793.
- 26C. Cao, Y. Yan, H. Zhang, J. Xie, S. Zhang, B. Pan, G. Cao, X. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 31653–31660.
- 27H. Mistry, A. S. Varela, S. Kühl, P. Strasser, B. R. Cuenya, Nat. Rev. Mater 2016, 1, 16009.
- 28Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 29Z. Xu, X. Zhang, X. Wang, J. Fang, Y. Zhang, X. Liu, W. Zhu, Y. Yan, Z. Zhuang, ACS Nano 2021, 15, 7131–7138.
- 30N. Ortiz, S. E. Skrabalak, Langmuir 2014, 30, 6649–6659.
- 31Z. Wu, L. Huang, H. Liu, H. Wang, ACS Catal. 2019, 9, 2956–2961.
- 32Z. Li, W. Niu, Z. Yang, A. Kara, Q. Wang, M. Wang, M. Gu, Z. Feng, Y. Du, Y. Yang, Energ Environ. Sci. 2020, 13, 3110–3118.
- 33H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Adv. Mater. 2020, 32, 2003649.
- 34F. Luo, Q. Zhang, X. Yu, S. Xiao, Y. Ling, H. Hu, L. Guo, Z. Yang, L. Huang, W. Cai, H. Cheng, Angew. Chem. Int. Ed. 2018, 57, 14862–14867.
- 35T.-J. Wang, Y.-C. Jiang, J.-W. He, F.-M. Li, Y. Ding, P. Chen, Y. Chen, Carbon Energy 2022, 4, 283–293.
- 36Y. G. Feng, Q. Shao, Y. J. Ji, X. N. Cui, Y. Y. Li, X. Zhu, X. Q. Huang, Sci. Adv. 2018, 4, eaap8817.
- 37W. M. Wang, D. Zheng, C. Du, Z. Q. Zou, X. G. Zhang, B. J. Xia, H. Yang, D. L. Akins, J. Power Sources 2007, 167, 243–249.
- 38A. R. J. Kucernak, K. F. Fahy, V. N. N. Sundaram, Catal. Today 2016, 262, 48–56.
- 39W. Tang, L. Zhang, G. Henkelman, J. Phys. Chem. Lett. 2011, 2, 1328–1331.
- 40T. Wang, A. Chutia, D. J. L. Brett, P. R. Shearing, G. He, G. Chai, I. P. Parkin, Energ Environ. Sci. 2021, 14, 2639–2669.
- 41X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang, J. Wen, R. Wang, C. Xu, N. Hu, J. Am. Chem. Soc. 2020, 142, 16776–16786.
- 42L.-N. Song, W. Zhang, Y. Wang, X. Ge, L.-C. Zou, H.-F. Wang, X.-X. Wang, Q.-C. Liu, F. Li, J.-J. Xu, Nat. Commun. 2020, 11, 2191.
- 43P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding, C. Li, D. Zhao, Z. Qian, Z. Zhang, L. Zhang, L. Yin, Nat. Commun. 2020, 11, 1576.
- 44D. Cao, C. Tan, Y. Chen, Nat. Commun. 2022, 13, 4908.
- 45E. Zhang, A. Dong, K. Yin, C. Ye, Y. Zhou, C. Tan, M. Li, X. Zheng, Y. Wang, X. Gao, H. Li, D. Wang, S. Guo, J. Am. Chem. Soc. 2024, 146, 2339–2344.
- 46Y. Zhou, Q. F. Gu, K. Yin, L. Tao, Y. J. Li, H. Tan, Y. Yang, S. J. Guo, Proc. Natl. Acad. Sci. USA 2023, 120, e2301439120.
- 47H.-G. Jung, J. Hassoun, J.-B. Park, Y.-K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579–585.
- 48Z. Y. Lyu, Y. Zhou, W. R. Dai, X. H. Cui, M. Lai, L. Wang, F. W. Huo, W. Huang, Z. Hu, W. Chen, Chem. Soc. Rev. 2017, 46, 6046–6072.
- 49H. Yan, W.-W. Wang, T.-R. Wu, Y. Gu, K.-X. Li, D.-Y. Wu, M. Zheng, Q. Dong, J. Yan, B.-W. Mao, J. Am. Chem. Soc. 2023, 145, 11959–11968.
- 50J.-J. Xu, Z.-L. Wang, D. Xu, L.-L. Zhang, X.-B. Zhang, Nat. Commun. 2013, 4, 2438.
- 51P. Zhang, B. Han, X. Yang, Y. Zou, X. Lu, X. Liu, Y. Zhu, D. Wu, S. Shen, L. Li, Y. Zhao, J. S. Francisco, M. Gu, J. Am. Chem. Soc. 2022, 144, 2129–2136.
- 52C. Meng, T. Ling, T.-Y. Ma, H. Wang, Z. Hu, Y. Zhou, J. Mao, X.-W. Du, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 2017, 29, 1604607.
- 53G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 54G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 55P. E. Blöchl, Phys. Rev. B 1994, 50, 17953–17979.
- 56J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 57B. Delley, J. Chem. Phys. 1990, 92, 508–517.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.