Proton Driving Mechanism Revealed in Sulfur-Doped Single-Atom FeN2O2 Carbon Dots for Superior Peroxidase Activity
Dr. Jia Yang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorMaolin Wang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorSiyu Gao
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorMeng Zhou
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorXiaogang Du
College of life Science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorLi Zhang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorDr. Ying Wang
College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorXianxiang Dai
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorYuanyuan Jiang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yunkun Li
College of life Science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunsong Zhang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Li Lin
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDr. Jia Yang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorMaolin Wang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorSiyu Gao
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorMeng Zhou
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorXiaogang Du
College of life Science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorLi Zhang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorDr. Ying Wang
College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorXianxiang Dai
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorYuanyuan Jiang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yunkun Li
College of life Science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunsong Zhang
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Li Lin
College of science, Sichuan Agricultural University, Ya'an, 625014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Heteroatom-doped single-atom nanozymes (SAEs) hold great promise as enzyme mimics, yet their catalytic mechanisms remain unclear. This study reveals that the proton driving mechanism induced by sulfur doping in single-atom FeN2O2 carbon dots (S-FeCDs) significantly enhances peroxidase (POD)-like activity. Synthesized via low-temperature carbonization, S-FeCDs exhibit FeN2O2 coordination with sulfur in the second shell, as confirmed by XAFS and AC-STEM. The POD-specific activity of S-FeCDs reached 295 U mg−1, which is 11.2-fold higher than that of sulfur-free FeCDs, with natural enzyme-like kinetics. In situ experiments, kinetic and mechanistic studies revealed that sulfur doping promotes H2O dissociation, enhances H+ adsorption, reduces the ΔG for H2O2-to-·OH conversion. DFT revealed a lowered energy barrier for the rate-determining step (2*OH → *O + *H2O) from 2.50 to 1.62 eV. In vivo, S-FeCDs demonstrated broad pH efficacy in MRSA-infected wound models, achieving near-complete healing within 7 days. The proton driving mechanism was further validated through nitro compound reduction, demonstrating accelerated N─H bond activation. This work highlights the critical role of sulfur-induced proton dynamics in enhancing SAEs performance, providing a rational strategy for designing multifunctional nanozymes in biomedical and catalytic applications.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202504575-sup-0001-SuppMat.docx91.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Zhang, X. Yan, K. Fan, Acc. Mater. Res. 2021, 2, 534–547.
- 2I. Nath, J. Chakraborty, F. Verpoort, Chem. Soc. Rev. 2016, 45, 4127–4170.
- 3F. Alam, Z. Shafique, S. T. Amjad, M. H. H. Bin Asad, Phytother. Res. 2019, 33, 41–54.
- 4W.-L. Li, T. Head-Gordon, ACS Cent. Sci. 2021, 7, 72–80.
- 5L. M. Podust, D. H. Sherman, Nat. Prod. Rep. 2012, 29, 1251.
- 6H. Wei, E. Wang, Chem. Soc. Rev. 2013, 42, 6060.
- 7G. Xiao, H. Li, Y. Zhao, H. Wei, J. Li, H. Su, ACS Appl. Nano Mater. 2022, 5, 14147–14170.
- 8Y. Ai, Z. N. Hu, X. Liang, H. b. Sun, H. Xin, Q. Liang, Adv. Funct. Mater. 2022, 32, 2110432.
- 9S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong, Y. Mao, Z. Zhang, R. Gao, W. Chen, R. Zhang, Nat. Catal. 2021, 4, 407–417.
- 10K. Wang, Q. Hong, C. Zhu, Y. Xu, W. Li, Y. Wang, W. Chen, X. Gu, X. Chen, Y. Fang, Y. Shen, S. Liu, Y. Zhang, Nat. Commun. 2024, 15, 5705.
- 11X. Xie, D. P. Wang, C. Guo, Y. Liu, Q. Rao, F. Lou, Q. Li, Y. Dong, Q. Li, H. B. Yang, Anal. Chem. 2021, 93, 4916–4923.
- 12X. Hai, S. Xi, S. Mitchell, K. Harrath, H. Xu, D. F. Akl, D. Kong, J. Li, Z. Li, T. Sun, H. Yang, Y. Cui, C. Su, X. Zhao, J. Li, J. Pérez-Ramírez, J. Lu, Nat. Nanotechnol. 2022, 17, 174–181.
- 13Q. Chen, Y. Liu, Y. Lu, Y. Hou, X. Zhang, W. Shi, Y. Huang, J. Hazard. Mater. 2022, 422, 126929.
- 14L. Jiao, W. Xu, Y. Zhang, Y. Wu, W. Gu, X. Ge, B. Chen, C. Zhu, S. Guo, Nano Today 2020, 35, 100971.
- 15L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu, D. Du, Y. Lin, C. Zhu, Anal. Chem. 2019, 91, 11994–11999.
- 16L. H. Xu, W. Liu, K. Liu, Adv. Funct. Mater. 2023, 33, 2304468.
- 17R. Nittoor-Veedu, X. Ju, M. Pumera, Adv. Energy Mater. 2024, 2402205.
- 18S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W.-C. Cheong, Y. Wang, L. Zheng, Nat. Nanotechnol. 2018, 13, 856–861.
- 19Q. Fan, P. Hou, C. Choi, T. S. Wu, S. Hong, F. Li, Y. L. Soo, P. Kang, Y. Jung, Z. Sun, Adv. Energy Mater. 2020, 10, 1903068.
- 20K. Chi, Z. Wang, T. Sun, P. He, F. Xiao, J. Lu, S. Wang, Small 2024, 20, 2311817.
- 21Y. Li, D. Luan, X. W. Lou, Adv. Mater. 2024, 36, 2412386.
- 22T. Sun, S. Mitchell, J. Li, P. Lyu, X. Wu, J. Pérez-Ramírez, J. Lu, Adv. Mater. 2021, 33, 2003075.
- 23S. Lv, H. Wang, Y. Zhou, D. Tang, S. Bi, Coord. Chem. Rev. 2023, 478, 214976.
- 24Y. Zhu, W. Wang, P. Gong, Y. Zhao, Y. Pan, J. Zou, R. Ao, J. Wang, H. Cai, H. Huang, M. Yu, H. Wang, L. Lin, X. Chen, Y. Wu, ACS Nano 2023, 17, 3064–3076.
- 25G. Li, H. Liu, T. Hu, F. Pu, J. Ren, X. Qu, J. Am. Chem. Soc. 2023, 145, 16835–16842.
- 26C. Peng, R. Pang, J. Li, E. Wang, Adv. Mater. 2024, 36, 2211724.
- 27R. Niu, Y. Liu, B. Xu, R. Deng, S. Zhou, Y. Cao, W. Li, H. Zhang, H. Zheng, S. Song, Y. Wang, H. Zhang, Adv. Mater. 2024, 36, 2312124.
- 28T. Sun, W. Zang, H. Yan, J. Li, Z. Zhang, Y. Bu, W. Chen, J. Wang, J. Lu, C. Su, ACS Catal. 2021, 11, 4498–4509.
- 29L. Jiao, Y. Kang, Y. Chen, N. Wu, Y. Wu, W. Xu, X. Wei, H. Wang, W. Gu, L. Zheng, Nano Today 2021, 40, 101261.
- 30F. Zhu, Y. Yu, Z. Yu, H. Qiu, G. P. Lu, Z. Chen, J. Hu, Y. Lin, Small 2024, 20, 2311848.
- 31X. Hai, X. Zhao, N. Guo, C. Yao, C. Chen, W. Liu, Y. Du, H. Yan, J. Li, Z. Chen, X. Li, Z. Li, H. Xu, P. Lyu, J. Zhang, M. Lin, C. Su, S. J. Pennycook, C. Zhang, S. Xi, J. Lu, ACS Catal. 2020, 10, 5862–5870.
- 32W. Ma, S. Xie, X.-G. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D.-Y. Wu, Y. Wang, Nat. Commun. 2019, 10, 892.
- 33S. Chen, X. Li, C. W. Kao, T. Luo, K. Chen, J. Fu, C. Ma, H. Li, M. Li, T. S. Chan, Angew. Chem. Int. Ed. 2022, 61, e202206233.
- 34J. Shen, J. Chen, Y. Qian, X. Wang, D. Wang, H. Pan, Y. Wang, Adv. Mater. 2024, 36, 2313406.
- 35M. A. Deshmukh, A. Bakandritsos, R. Zbořil, Nano-Micro Lett. 2025, 17, 1.
- 36X. Wang, H. Wang, S. Zhou, J. Phys. Chem. Lett. 2021, 12, 11751–11760.
- 37R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H. C. Schröder, W. E. Müller, W. Tremel, Adv. Funct. Mater. 2011, 21, 501–509.
- 38Y. Ye, J. Zou, W. Wu, Z. Wang, S. Wen, Z. Liang, S. Liu, Y. Lin, X. Chen, T. Luo, Nanoscale 2024, 16, 3324–3346.
- 39T. N. J. I. Edison, R. Atchudan, M. G. Sethuraman, J.-J. Shim, Y. R. Lee, J. Photochem. Photobiol. B 2016, 161, 154–161.
- 40M. Deng, D. Wang, Y. Li, Adv. Mater. 2024, 36, 2314340.
- 41M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang, J. Yuan, Nano-Micro Lett. 2021, 13, 1–12.
- 42Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min, J.-J. Zhu, Y. Lin, W. Zhu, Nat. Commun. 2021, 12, 586.
- 43Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. C. Cheong, R. Shen, Adv. Mater. 2018, 30, 1800588.
- 44H. Wang, Y. Bian, J. Hu, L. Dai, Appl. Catal. B 2018, 238, 592–598.
- 45H. K. Sadhanala, S. Senapati, K. K. Nanda, Carbon 2018, 133, 200–208.
- 46J. Zhang, Y. Zhao, C. Chen, Y.-C. Huang, C.-L. Dong, C.-J. Chen, R.-S. Liu, C. Wang, K. Yan, Y. Li, G. Wang, J. Am. Chem. Soc. 2019, 141, 20118–20126.
- 47Z. Chen, H. Niu, J. Ding, H. Liu, P.-H. Chen, Y.-H. Lu, Y.-R. Lu, W. Zuo, L. Han, Y. Guo, S.-F. Hung, Y. Zhai, Angew. Chem. Int. Ed. 2021, 60, 25404–25410.
- 48Y. Tang, Y. Chen, Y. Wu, W. Xu, Z. Luo, H.-R. Ye, W. Gu, W. Song, S. Guo, C. Zhu, Nano Lett. 2023, 23, 267–275.
- 49M. Lei, X. Ding, J. Liu, Y. Tang, H. Chen, Y. Zhou, C. Zhu, H. Yan, Anal. Chem. 2024, 96, 6072–6078.
- 50F. Haase, J. Sauer, J. Phys. Chem. 1994, 98, 3083–3085.
- 51A. Damian, S. Omanovic, J. Power Sources 2006, 158, 464–476.
- 52J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 2019, 12, 2298–2304.
- 53B. Jiang, D. Duan, L. Gao, M. Zhou, K. Fan, Y. Tang, J. Xi, Y. Bi, Z. Tong, G. F. Gao, Nat. Protoc. 2018, 13, 1506–1520.
- 54N. C. Veitch, Phytochemistry 2004, 65, 249–259.
- 55Y. Zhou, X. Ma, C. Yu, Y. Tian, Q. Liang, M. Xin, P. Sun, F. Liu, D. Chao, X. Jia, C. Wang, G. Lu, ACS Nano 2024, 18, 15681–15694.
- 56X. Qian, T. Lu, C. Huang, D. Zheng, G. Gong, X. Chu, X. Wang, H. Lai, L. Ma, L. Jiang, X. Sun, X. Ji, M. Li, Y. Zhang, Adv. Funct. Mater. 2024, 34, 2315576.
- 57W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, J. Am. Chem. Soc. 2016, 138, 3570–3578.
- 58Z. Ma, T. Song, Y. Yuan, Y. Yang, Chem. Sci. 2019, 10, 10283–10289.
- 59P. S. Kumbhar, J. Sanchez-Valente, J. M. M. Millet, F. Figueras, J. Catal. 2000, 191, 467–473.
- 60S. Hammes-Schiffer, Chem. Rev., 2010, 110, 6937–6938.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.