π-Diamond: A Diamondoid Superstructure Driven by π-Interactions
Kejiang Liang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorYimin Liang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorMin Tang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorJiali Liu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorZheng-Bin Tang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorCorresponding Author
Prof. Zhichang Liu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
Search for more papers by this authorKejiang Liang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorYimin Liang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorMin Tang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorJiali Liu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorZheng-Bin Tang
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
Search for more papers by this authorCorresponding Author
Prof. Zhichang Liu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030 China
International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
Search for more papers by this authorAbstract
Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409507-sup-0001-misc_information.pdf6.3 MB | Supporting Information |
ange202409507-sup-0001-Video_S1._DWT_Pentamer_formation_from_trans-m-DB.mp47.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Li, Q. Fan, Y. Yin, Chem. Rev. 2022, 122, 4976–5067;
- 1bJ. Fonseca, L. Meng, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2023, 52, 2528–2543;
- 1cK. Deng, Z. Luo, L. Tan, Z. Quan, Chem. Soc. Rev. 2020, 49, 6002–6038.
- 2H. Y. Li, J. D. Carter, T. H. LaBean, Mater. Today 2009, 12, 24–32.
- 3
- 3aM.-P. Zhuo, G.-P. He, X.-D. Wang, L.-S. Liao, Nat. Commun. 2021, 12, 2252;
- 3bA. Mukherjee, M. D. Seyfried, B. J. Ravoo, Angew. Chem. Int. Ed. 2023, 62, e202304437.
- 4Y. Song, X. Song, X. Wang, J. Bai, F. Cheng, C. Lin, X. Wang, H. Zhang, J. Sun, T. Zhao, H. Nara, Y. Sugahara, X. Li, Y. Yamauchi, J. Am. Chem. Soc. 2022, 144, 17457–17467.
- 5J. Chen, L. Xu, M. Yang, X. Chen, X. Chen, W. Hong, Chem. Mater. 2019, 31, 8918–8926.
- 6
- 6aD. M. Kaphan, M. D. Levin, R. G. Bergman, K. N. Raymond, F. D. Toste, Science 2015, 350, 1235–1238;
- 6bM. D. Pluth, R. G. Bergman, K. N. Raymond, Science 2007, 316, 85–88.
- 7
- 7aY. Katagiri, Y. Tsuchida, Y. Matsuo, M. Yoshizawa, J. Am. Chem. Soc. 2021, 143, 21492–21496;
- 7bG.-L. Li, Z. Zhuo, B. Wang, X.-L. Cao, H.-F. Su, W. Wang, Y.-G. Huang, M. Hong, J. Am. Chem. Soc. 2021, 143, 10920–10929;
- 7cE. Benchimol, B.-N. T. Nguyen, T. K. Ronson, J. R. Nitschke, Chem. Soc. Rev. 2022, 51, 5101–5135;
- 7dM. Yamashina, Y. Tanaka, R. Lavendomme, T. K. Ronson, M. Pittelkow, J. R. Nitschke, Nature 2019, 574, 511–515;
- 7eM. D. Pluth, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2009, 42, 1650–1659.
- 8
- 8aB. Shen, C. Pan, X. Feng, J. Kim, M. Sun, M. Lee, Angew. Chem. Int. Ed. 2023, 62, e202300658;
- 8bJ. Wang, Y. Yao, C. Zhang, Q. Sun, D. Cheng, X. Huang, J. Feng, J. Wan, J. Zou, C. Liu, C. Yu, Adv. Sci. 2021, 8, 2100120.
- 9
- 9aG. Johnson, M. Y. Yang, C. Liu, H. Zhou, X. Zuo, D. A. Dickie, S. Wang, W. Gao, B. Anaclet, F. A. Perras, F. Ma, C. Zeng, D. Wang, S. Bals, S. Dai, Z. Xu, G. Liu, W. A. Goddard, S. Zhang, Nat. Synth. 2023, 2, 828–837;
- 9bL. Tan, M. Sun, H. Wang, J. Wang, J. Kim, M. Lee, Nat. Synth. 2023, 2, 1222–1231.
- 10
- 10aH. Qiu, Z. M. Hudson, M. A. Winnik, I. Manners, Science 2015, 347, 1329–1332;
- 10bZ. Huang, S.-K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok, E. Yashima, M. Lee, Science 2012, 337, 1521–1526;
- 10cG. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 2014, 345, 1149–1153;
- 10dK. Koner, S. Karak, S. Kandambeth, S. Karak, N. Thomas, L. Leanza, C. Perego, L. Pesce, R. Capelli, M. Moun, M. Bhakar, T. G. Ajithkumar, G. M. Pavan, R. Banerjee, Nat. Chem. 2022, 14, 507–514.
- 11
- 11aE. J. Carrington, C. A. McAnally, A. J. Fletcher, S. P. Thompson, M. Warren, L. Brammer, Nat. Chem. 2017, 9, 882–889;
- 11bT. Sawada, M. Fujita, Chem 2020, 6, 1861–1876;
- 11cY. Tamura, H. Takezawa, M. Fujita, J. Am. Chem. Soc. 2020, 142, 5504–5508;
- 11dQ.-H. Guo, Z. Liu, P. Li, D. Shen, Y. Xu, M. R. Ryder, H. Chen, C. L. Stern, C. D. Malliakas, X. Zhang, L. Zhang, Y. Qiu, Y. Shi, R. Q. Snurr, D. Philp, O. K. Farha, J. F. Stoddart, Chem 2019, 5, 2353–2364;
- 11eL. Cao, P. Wang, X. Miao, Y. Dong, H. Wang, H. Duan, Y. Yu, X. Li, P. J. Stang, J. Am. Chem. Soc. 2018, 140, 7005–7011;
- 11fS. V. Lindeman, J. Hecht, J. K. Kochi, J. Am. Chem. Soc. 2003, 125, 11597–11606;
- 11gJ. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367–371;
- 11hA. Mizuno, Y. Shuku, R. Suizu, M. M. Matsushita, M. Tsuchiizu, D. Reta Mañeru, F. Illas, V. Robert, K. Awaga, J. Am. Chem. Soc. 2015, 137, 7612–7615.
- 12J. E. Field, Rep. Prog. Phys. 2012, 75, 126505.
- 13R. S. Mulliken, J. Chem. Phys. 1955, 23, 1841–1846.
- 14M. J. Zaworotko, Chem. Soc. Rev. 1994, 23, 283–288.
- 15O. R. Evans, R.-G. Xiong, Z. Wang, G. K. Wong, W. Lin, Angew. Chem. Int. Ed. 1999, 38, 536–538.
10.1002/(SICI)1521-3773(19990215)38:4<536::AID-ANIE536>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 16
- 16aZ. Li, H. Li, X. Guan, J. Tang, Y. Yusran, Z. Li, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, J. Am. Chem. Soc. 2017, 139, 17771–17774;
- 16bX. Han, J. Huang, C. Yuan, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140, 892–895;
- 16cD. Beaudoin, T. Maris, J. D. Wuest, Nat. Chem. 2013, 5, 830–834;
- 16dT. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science 2018, 361, 48–52.
- 17Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2007, 3, 289–300.
- 18
- 18aT. Chen, M. Li, J. Liu, Cryst. Growth Des. 2018, 18, 2765–2783;
- 18bO. Oki, H. Yamagishi, Y. Morisaki, R. Inoue, K. Ogawa, N. Miki, Y. Norikane, H. Sato, Y. Yamamoto, Science 2022, 377, 673–678;
- 18cZ.-F. Yao, J.-Y. Wang, J. Pei, Cryst. Growth Des. 2018, 18, 7–15.
- 19C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191–2201.
- 20M. Tang, Y. Liang, X. Lu, X. Miao, L. Jiang, J. Liu, L. Bian, S. Wang, L. Wu, Z. Liu, Chem 2021, 7, 2160–2174.
- 21C. Donohoe, A. Charisiadis, S. Maguire, B. Twamley, F. A. Schaberle, L. C. Gomes-da-Silva, M. O. Senge, Eur. J. Org. Chem. 2023, 26, e202201453.
- 22Deposition numbers 2264055 (for trans-m-DB) and 2264056 (for trans-o-DB) contain the supplementary crystallographic data for this paper.These data are provided free of charge by the joint CambridgeCrystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23D. Reddy, T. K. Chandrashekar, J. Chem. Soc. Dalton Trans. 1992, 619–625.
- 24J.-H. Deng, J. Luo, Y.-L. Mao, S. Lai, Y.-N. Gong, D.-C. Zhong, T.-B. Lu, Sci. Adv. 2020, 6, eaax9976.
- 25
- 25aM. Samperi, D. Limon, D. B. Amabilino, L. Perez-Garcia, Cell Rep. Phys. Sci. 2020, 1, 10030;
- 25bM. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351–371.
- 26R. W. Redmond, J. N. Gamlin, Photochem. Photobiol. 1999, 70, 391–475.
- 27J. Wang, Y. Zhong, X. Wang, W. Yang, F. Bai, B. Zhang, L. Alarid, K. Bian, H. Fan, Nano Lett. 2017, 17, 6916–6921.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.