Finding Natural, Dense, and Stable Frustrated Lewis Pairs on Wurtzite Crystal Surfaces for Small-Molecule Activation
Xi-Yang Yu
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorZheng-Qing Huang
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorDr. Tao Ban
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorProf. Dr. Yun-Hua Xu
Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhong-Wen Liu
Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chun-Ran Chang
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000 China
Search for more papers by this authorXi-Yang Yu
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorZheng-Qing Huang
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorDr. Tao Ban
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorProf. Dr. Yun-Hua Xu
Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhong-Wen Liu
Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chun-Ran Chang
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049 China
Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000 China
Search for more papers by this authorAbstract
The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm−2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.
Conflict of interests
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202405405-sup-0001-misc_information.pdf5.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124–1126.
- 2
- 2aL. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan, J. Paradies, Angew. Chem. Int. Ed. 2012, 51, 10164–10168;
- 2bK. Chernichenko, Á. Madarász, I. Pápai, M. Nieger, M. Leskelä, T. Repo, Nat. Chem. 2013, 5, 718–723;
- 2cG. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796–1797;
- 2dG. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2007, 316, 439–441.
- 3D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018–10032.
- 4Y. Ma, S. Zhang, C.-R. Chang, Z.-Q. Huang, J. C. Ho, Y. Qu, Chem. Soc. Rev. 2018, 47, 5541–5553.
- 5D. W. Stephan, J. Am. Chem. Soc. 2021, 143, 20002–20014.
- 6J. Zhao, X. Liu, Z. Chen, ACS Catal. 2016, 7, 766–771.
- 7
- 7aK. K. Ghuman, T. E. Wood, L. B. Hoch, C. A. Mims, G. A. Ozin, C. V. Singh, Phys. Chem. Chem. Phys. 2015, 17, 14623–14635;
- 7bK. K. Ghuman, L. B. Hoch, P. Szymanski, J. Y. Y. Loh, N. P. Kherani, M. A. El-Sayed, G. A. Ozin, C. V. Singh, J. Am. Chem. Soc. 2016, 138, 1206–1214;
- 7cL. Wang, T. Yan, R. Song, W. Sun, Y. Dong, J. Guo, Z. Zhang, X. Wang, G. A. Ozin, Angew. Chem. Int. Ed. 2019, 58, 9501–9505.
- 8
- 8aZ. Niu, W. Zhang, P. Lan, B. Aguila, S. Ma, Angew. Chem. Int. Ed. 2019, 58, 7420–7424;
- 8bZ. Niu, W. D. C. Bhagya Gunatilleke, Q. Sun, P. C. Lan, J. Perman, J.-G. Ma, Y. Cheng, B. Aguila, S. Ma, Chem 2018, 4, 2587–2599;
- 8cS. Shyshkanov, T. N. Nguyen, F. M. Ebrahim, K. C. Stylianou, P. J. Dyson, Angew. Chem. Int. Ed. 2019, 58, 5371–5375;
- 8dY. Liang, Z. Zhang, X. Su, X. Feng, S. Xing, W. Liu, R. Huang, Y. Liu, Angew. Chem. Int. Ed. 2023, 62, e202309030.
- 9
- 9aS. Zhang, Z.-Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C.-R. Chang, Y. Qu, Nat. Commun. 2017, 8, 15266;
- 9bZ.-Q. Huang, L.-P. Liu, S. Qi, S. Zhang, Y. Qu, C.-R. Chang, ACS Catal. 2018, 8, 546–554;
- 9cZ.-Q. Huang, T. Zhang, C.-R. Chang, J. Li, ACS Catal. 2019, 9, 5523–5536;
- 9dZ.-Q. Huang, T.-H. Li, B. Yang, C.-R. Chang, Chin. J. Catal. 2020, 41, 1906–1915.
- 10
- 10aW. Yu, Y. Zhang, Y. Qin, D. Zhang, K. Liu, G. A. Bagliuk, J. Lai, L. Wang, Adv. Energy Mater. 2022, 2203136;
- 10bL. Li, W. Liu, R. Chen, S. Shang, X. Zhang, H. Wang, H. Zhang, B. Ye, Y. Xie, Angew. Chem. Int. Ed. 2022, 61, e202214490;
- 10cZ. Li, C. Mao, Q. Pei, P. N. Duchesne, T. He, M. Xia, J. Wang, L. Wang, R. Song, F. M. Ali, D. M. Meira, Q. Ge, K. K. Ghuman, L. He, X. Zhang, G. A. Ozin, Nat. Commun. 2022, 13, 7205;
- 10dY. Li, Y. Cao, X. Ge, H. Zhang, K. Yan, J. Zhang, G. Qian, Z. Jiang, X. Gong, A. Li, X. Zhou, W. Yuan, X. Duan, J. Catal. 2022, 407, 290–299.
- 11
- 11aD. W. Stephan, Acc. Chem. Res. 2015, 48, 306–316;
- 11bF.-G. Fontaine, D. W. Stephan, Philos. Trans. R. Soc. London Ser. A 2017, 375, 20170004.
- 12
- 12aR. Wischert, P. Laurent, C. Copéret, F. Delbecq, P. Sautet, J. Am. Chem. Soc. 2012, 134, 14430–14449;
- 12bS. Zhang, Z.-Q. Huang, X. Chen, J. Gan, X. Duan, B. Yang, C.-R. Chang, Y. Qu, J. Catal. 2019, 372, 142–150.
- 13
- 13aQ. Wan, J. Li, R. Jiang, S. Lin, Phys. Chem. Chem. Phys. 2021, 23, 24349–24356;
- 13bQ. Wan, Y. Chen, S. Zhou, J. Lin, S. Lin, J. Mater. Chem. A 2021, 9, 14064–14073.
- 14
- 14aG. Wulff, Z. Kristallogr. Cryst. Mater. 1901, 34, 449–530.
- 15
- 15aJ. Karpiński, J. Jun, S. Porowski, J. Cryst. Growth 1984, 66, 1–10;
- 15bJ. Leitner, V. Bartůněk, D. Sedmidubský, O. Jankovský, Appl. Mater. Today 2018, 10, 1–11.
- 16
- 16aS. V. Auras, R. van Lent, D. Bashlakov, J. M. Piñeiros Bastidas, T. Roorda, R. Spierenburg, L. B. F. Juurlink, Angew. Chem. Int. Ed. 2020, 59, 20973;
- 16bZ. Li, Y. Xiao, P. R. Chowdhury, Z. Wu, T. Ma, J. Z. Chen, G. Wan, T.-H. Kim, D. Jing, P. He, P. J. Potdar, L. Zhou, Z. Zeng, X. Ruan, J. T. Miller, J. P. Greeley, Y. Wu, A. Varma, Nat. Catal. 2021, 4, 882–891;
- 16cH. Ma, W. F. Schneider, ACS Catal. 2019, 9, 2407–2414;
- 16dR. Zhang, Z. Deng, L. Shi, M. Kumar, J. Chang, S. Wang, X. Fang, W. Tong, G. Meng, ACS Appl. Mater. Interfaces 2022, 14, 24536–24545.
- 17
- 17aC. Liu, J. Kang, Z.-Q. Huang, Y.-H. Song, Y.-S. Xiao, J. Song, J.-X. He, C.-R. Chang, H.-Q. Ge, Y. Wang, Z.-T. Liu, Z.-W. Liu, Nat. Commun. 2021, 12, 2305;
- 17bH. Shi, H. Yuan, Z. Li, W. Wang, Z. Li, X. Shao, J. Phys. Chem. C 2019, 123, 13283–13287;
- 17cX.-Y. Yu, T. Ban, X. Su, Z.-Q. Huang, C.-R. Chang, J. Phys. Chem. C 2023, 127, 15139–15147.
- 18
- 18aL. Li, X. Mu, W. Liu, X. Kong, S. Fan, Z. Mi, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53, 14106–14109;
- 18bR. Shavi, J. Ko, A. Cho, J. W. Han, J. G. Seo, Appl. Catal. B 2018, 229, 237–248.
- 19T. A. Rokob, I. Bakó, A. Stirling, A. Hamza, I. Pápai, J. Am. Chem. Soc. 2013, 135, 4425–4437.
- 20
- 20aG. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251–14269;
- 20bG. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50;
- 20cG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 21J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 22G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758–1775.
- 23
- 23aL. L. Jensen, J. T. Muckerman, M. D. Newton, J. Phys. Chem. C 2008, 112, 3439–3446;
- 23bP. Erhart, K. Albe, A. Klein, Phys. Rev. B 2006, 73, 205203.
- 24S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 25H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.
- 26
- 26aY.-N. Xu, W. Y. Ching, Phys. Rev. B 1993, 48, 4335–4351;
- 26bD. Kriegner, S. Assali, A. Belabbes, T. Etzelstorfer, V. Holý, T. Schülli, F. Bechstedt, E. P. A. M. Bakkers, G. Bauer, J. Stangl, Phys. Rev. B 2013, 88, 115315;
- 26cD. Kriegner, E. Wintersberger, K. Kawaguchi, J. Wallentin, M. T. Borgström, J. Stangl, Nanotechnology 2011, 22, 425704;
- 26dN. Benyahia, A. Zaoui, D. Madouri, M. Ferhat, J. Appl. Phys. 2017, 121, 125701;
- 26eB. Krause, D. S. Kuznetsov, A. E. Yakshin, S. Ibrahimkutty, T. Baumbach, F. Bijkerk, J. Appl. Crystallogr. 2018, 51, 1013–1020;
- 26fA. J. Cinthia, G. S. Priyanga, R. Rajeswarapalanichamy, K. Iyakutti, J. Phys. Chem. Solids. 2015, 79, 23–42;
- 26gR. J. Guerrero-Moreno, N. Takeuchi, Phys. Rev. B 2002, 66, 205205;
- 26hD. Rodic, V. Spasojevic, A. Bajorek, P. Onnerud, J. Magn. Magn. Mater. 1996, 152, 159–164;
- 26iY. H. Lai, Q. L. He, W. Y. Cheung, S. K. Lok, K. S. Wong, S. K. Ho, K. W. Tam, I. K. Sou, Appl. Phys. Lett. 2013, 102, 171104.
- 27
- 27aG. Henkelman, H. Jónsson, J. Chem. Phys. 1999, 111, 7010–7022;
- 27bH. Jónsson, G. Mills, K. W. Jacobsen, In classical and quantum dynamics in condensed phase simulations, B. J. Berne, G. Ciccotti, D. F. Coker, ed., World Scientific: Singapore, 1998; p 385–404.
- 28
- 28aS. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2013, 34, 2557–2567;
- 28bV. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461–5466;
- 28cR. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617–8624;
- 28dS. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030–1035.
- 29
- 29aW. G. Hoover, Phys. Rev. A 1985, 31, 1695–1697;
- 29bS. Nosé, J. Chem. Phys. 1984, 81, 511–519.
- 30
- 30aG. D. Scott, Nature 1962, 194, 956–957;
- 30bG. Mason, Nature 1968, 217, 733–735.
- 31
- 31aA. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002;
- 31bD. Zagorac, H. Müller, S. Ruehl, J. Zagorac, S. Rehme, J. Appl. Crystallogr. 2019, 52, 918–925.
- 32
- 32aV. Chaudhari, K. Dutta, C.-J. Li, J. Kopyscinski, J. Mol. Catal. 2020, 482, 110606;
- 32bJ. Luo, J.-X. Liu, W.-X. Li, J. Phys. Chem. C 2022, 126, 9059–9068;
- 32cX. Nie, X. Ren, C. Tu, C. Song, X. Guo, J. G. Chen, Chem. Commun. 2020, 56, 3983–3986.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.