Pyridine-Based Covalent Organic Frameworks with Pyridyl-Imine Structures for Boosting Photocatalytic H2O2 Production via One-Step 2e− Oxygen Reduction
Weijian Wu
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorZixuan Li
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorShiyin Liu
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorDi Zhang
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorBingzi Cai
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorYizhao Liang
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorProf. Dr. Mingxing Wu
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorProf. Dr. Yaozu Liao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaojia Zhao
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorWeijian Wu
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorZixuan Li
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorShiyin Liu
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorDi Zhang
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorBingzi Cai
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorYizhao Liang
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorProf. Dr. Mingxing Wu
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorProf. Dr. Yaozu Liao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaojia Zhao
Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024 Hebei, China
Search for more papers by this authorAbstract
Bipyridine-based covalent organic frameworks (COFs) have emerged as promising contenders for the photocatalytic generation of hydrogen peroxide (H2O2). However, the presence of imine nitrogen alters the mode of H2O2 generation from an efficient one-step two-electron (2e−) route to a two-step 2e− oxygen reduction pathway. In this work, we introduce 3,3′-bipyridine units into imine-based COF skeletons, creating a pyridyl-imine structure with two adjacent nitrogen atoms between the pyridine ring and imine linkage. This unique bipyridine-like architecture can effectively suppress the two-step 2e− ORR process at the single imine-nitrogen site, facilitating a more efficient one-step 2e− pathway. Consequently, the optimized pyridyl-imine COF (PyIm-COF) exhibits a remarkable H2O2 production rate of up to 5850 μmol h−1 g−1, nearly double that of pristine bipyridine COFs. This work provides valuable insight into the rational design of functionalized COFs for enhanced H2O2 production in photocatalysis.
Conflict of interests
The authors have no conflicts of interest to declare.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202404563-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. J. Lewis, K. Ueura, X. Liu, Y. Fukuta, T. E. Davies, D. J. Morgan, L. W. Chen, J. Z. Qi, J. Singleton, J. K. Edwards, S. J. Freakley, C. J. Kiely, Y. Yamamoto, G. J. Hutchings, Science 2022, 376, 615–620.
- 2S. C. Perry, D. Pangotra, L. Vieira, L. I. Csepei, V. Sieber, L. Wang, C. P. de León, F. C. Walsh, Nat. Chem. Rev. 2019, 3, 442–458.
- 3K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- 4J. Y. Tang, T. S. Zhao, D. Solanki, X. B. Miao, W. G. Zhou, S. Hu, Joule 2021, 5, 1432–1461.
- 5C. Xia, Y. Xia, P. Zhu, L. Fan, H. T. Wang, Science 2019, 366, 226–231.
- 6J. M. C. Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962–6984.
- 7Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2014, 53, 13454–13459.
- 8Z. Y. Teng, Q. T. Zhang, H. B. Yang, K. Kato, W. J. Yang, Y. R. Lu, S. X. Liu, C. Y. Wang, A. Yamakata, C. L. Su, B. Liu, T. Ohno, Nat. Catal. 2021, 4, 374–384.
- 9Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 2019, 18, 985–993.
- 10T. Liu, Z. H. Pan, J. J. M. Vequizo, K. Kato, B. B. Wu, A. Yamakata, K. Katayama, B. L. Chen, C. H. Chu, K. Domen, Nat. Commun. 2022, 13, 1034.
- 11Z. J. Zhang, T. Tsuchimochi, T. Ina, Y. Kumabe, S. Muto, K. Ohara, H. Yamada, S. L. Ten-no, T. Tachikawa, Nat. Commun. 2022, 13, 1499.
- 12H. L. Hou, X. K. Zeng, X. W. Zhang, Angew. Chem. Int. Ed. 2020, 59, 17356–17376.
- 13C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol. 1988, 22, 796–806.
- 14L. X. Wang, J. J. Zhang, Y. Zhang, H. G. Yu, Y. H. Qu, J. G. Yu, Small 2022, 18, 2104561.
- 15D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599–603.
- 16L. Chen, L. Wang, Y. Y. Wan, Y. Zhang, Z. M. Qi, X. J. Wu, H. X. Xu, Adv. Mater. 2020, 32, 1904433.
- 17X. Zhang, P. J. Ma, C. Wang, L. Y. Gan, X. J. Chen, P. Zhang, Y. Wang, H. Li, L. H. Wang, X. Y. Zhou, K. Zheng, Energy Environ. Sci. 2022, 15, 830–842.
- 18C. Krishnaraj, H. S. Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van der Voort, J. Am. Chem. Soc. 2020, 142, 20107–20116.
- 19P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 2023, 145, 2975–2984.
- 20M. J. Deng, J. M. Sun, A. Laemont, C. H. Liu, L. Y. Wang, L. Bourda, J. Chakraborty, K. Van Hecke, R. Morent, N. De Geyter, K. Leus, H. Chen, P. van der Voort, Green Chem. 2023, 25, 3069–3076.
- 21W. Zhao, P. Y. Yan, B. Y. Li, M. Bahri, L. J. Liu, X. Zhou, R. Clowes, N. D. Browning, Y. Wu, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9902–9909.
- 22F. Y. Liu, P. Zhou, Y. H. Hou, H. Tan, Y. Liang, J. L. Liang, Q. Zhang, S. J. Guo, M. P. Tong, J. R. Ni, Nat. Commun. 2023, 14, 4344.
- 23J. N. Chang, Q. Li, J. W. Shi, M. Zhang, L. Zhang, S. Li, Y. F. Chen, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202218868.
- 24P. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 2023, 62, e202304349.
- 25Z. J. Yong, T. Y. Ma, Angew. Chem. Int. Ed. 2023, 62, e202308980.
- 26R. Y. Liu, Y. Z. Chen, H. D. Yu, M. Položij, Y. Y. Guo, T. C. Sum, T. Heine, D. L. Jiang, Nat. Catal. 2024, 7, 195–206.
- 27H. Cheng, H. F. Lv, J. Cheng, L. Wang, X. J. Wu, H. X. Xu, Adv. Mater. 2022, 34, e2107480.
- 28C. H. Chu, D. H. Huang, Q. H. Zhu, E. Stavitski, J. A. Spies, Z. H. Pan, J. Mao, H. L. L. Xin, C. A. Schmuttenmaer, S. Hu, J. H. Kim, ACS Catal. 2019, 9, 626–631.
- 29Q. Y. Hu, Y. J. Dong, K. W. Ma, X. Y. Meng, Y. Ding, J. Catal. 2022, 413, 321–330.
- 30S. Wu, X. Quan, ACS EST Engg. 2022, 2, 1068–1079.
- 31T. Zhang, W. Schilling, S. U. Khan, H. Y. V. Ching, C. Lu, J. H. Chen, A. Jaworski, G. Barcaro, S. Monti, K. De Wael, A. Slabon, S. Das, ACS Catal. 2021, 11, 14087–14101.
- 32M. P. Kou, Y. Y. Wang, Y. X. Xu, L. Q. Ye, Y. P. Huang, B. H. Jia, H. Li, J. Q. Ren, Y. Deng, J. H. Chen, Y. Zhou, K. Lei, L. Wang, W. Liu, H. W. Huang, T. Y. Ma, Angew. Chem. Int. Ed. 2022, 61, e202200413.
- 33Q. B. Liao, Q. N. Sun, H. C. Xu, Y. D. Wang, Y. Xu, Z. Y. Li, J. W. Hu, D. Wang, H. J. Li, K. Xi, Angew. Chem. Int. Ed. 2023, 62, e202310556.
- 34S. Wu, H. T. Yu, S. Chen, X. Quan, ACS Catal. 2020, 10, 14380–14389.
- 35J. M. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y. Y. Liu, K. Leus, H. Vrielinck, V. Van Speybroeck, P. Van Der Voort, Angew. Chem. Int. Ed. 2023, 62, e202216719.
- 36S. J. Zhou, H. Hu, H. K. Hu, Q. C. Jiang, H. R. Xie, C. L. Li, S. Y. Gao, Y. Kong, Y. J. Hu, Sci. China Mater. 2023, 66, 1837–1846.
- 37C. C. Shao, Q. He, M. C. Zhang, L. Jia, Y. J. Ji, Y. P. Hu, Y. Y. Li, W. Huang, Y. G. Li, Chin. J. Catal. 2023, 46, 28–35.
- 38D. Chen, W. B. Chen, Y. T. Wu, L. Wang, X. J. Wu, H. X. Xu, L. Chen, Angew. Chem. Int. Ed. 2023, 62, e202217479.
- 39J. Z. Cheng, S. J. Wan, S. W. Cao, Angew. Chem. Int. Ed. 2023, 62, e202310476.
- 40X. Y. Wang, L. J. Chen, S. Y. Chong, M. A. Little, Y. Z. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180–1189.
- 41Y. W. Zhang, C. Y. Zhang, W. Shi, Z. W. Zhang, Y. N. Zhao, X. L. Luo, X. M. Liu, New J. Chem. 2022, 46, 6394–6397.
- 42C. C. Qin, X. D. Wu, L. Tang, X. H. Chen, M. Li, Y. Mou, B. Su, S. B. Wang, C. Y. Feng, J. W. Liu, X. Z. Yuan, Y. L. Zhao, H. Wang, Nat. Commun. 2023, 14, 5238.
- 43H. Dong, X. Zhang, Y. Lu, Y. Yang, Y. P. Zhang, H. L. Tang, F. M. Zhang, Z. D. Yang, X. J. Sun, Y. J. Feng, Appl. Catal. B 2020, 276, 119173.
- 44Z. L. Weng, Y. F. Lin, B. Han, X. F. Zhang, Q. Guo, Y. Luo, X. W. Ou, Y. Zhou, J. Jiang, J. Hazard. Mater. 2023, 448, 130869.
- 45L. Chen, C. Chen, Z. Yang, S. Li, C. H. Chu, B. L. Chen, Adv. Funct. Mater. 2021, 31, 2105731.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.