Ostwald ripening for designing time-dependent crystal hydrogels
Qianwei Liu
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Yuanlai Fang
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Institute for Advanced Study, Chengdu University, Chengdu, 610106 P. R. China
Contribution: Formal analysis (equal), Investigation (supporting), Writing - original draft (supporting)
Search for more papers by this authorDr. Xinhong Xiong
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
Contribution: Formal analysis (supporting), Methodology (equal), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorDr. Weiming Xu
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Contribution: Formal analysis (supporting), Investigation (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Jiaxi Cui
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
Contribution: Conceptualization (lead), Formal analysis (equal), Supervision (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorQianwei Liu
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Yuanlai Fang
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Institute for Advanced Study, Chengdu University, Chengdu, 610106 P. R. China
Contribution: Formal analysis (equal), Investigation (supporting), Writing - original draft (supporting)
Search for more papers by this authorDr. Xinhong Xiong
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
Contribution: Formal analysis (supporting), Methodology (equal), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorDr. Weiming Xu
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Contribution: Formal analysis (supporting), Investigation (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Jiaxi Cui
Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731 China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
Contribution: Conceptualization (lead), Formal analysis (equal), Supervision (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Ostwald ripening (OR), a classic solution theory describing molecular transfer from metastable crystal to stable one, is applied to design time-dependent crystal hydrogels that can automatically change their mechanical properties. Using a system made from crosslinked polyacrylamide (PAM) and sodium acetate (NaAc), we demonstrate that metastable fibrous crystal networks of NaAc preferably form in PAM hydrogels via a polymer-involving mismatch nucleation. These fibrous crystals would undergo OR and evolve into isolated bulk crystals, leading to a significant reduction in material rigidity (179 folds) and interfacial adhesion (20 folds). This transformation can be applied to program time-dependent self-recovery in shape and self-delamination. Since OR is a ubiquitous, robust feature of various crystals, the approach reported here represents a new direction for designing advanced transient soft materials.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202320095-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Ostwald, Zeitschrift für Phys. Chemie 1897, 22, 289–330.
- 2F. D. Fischer, T. Waitz, D. Vollath, N. K. Simha, Prog. Mater. Sci. 2008, 53, 481–527.
- 3X. Ye, J. Cui, B. Li, N. Li, J. Zhang, X. Wan, Angew. Chem. Int. Ed. 2018, 57, 8120–8124.
- 4
- 4aT. P. Doan-Nguyen, S. Jiang, K. Koynov, K. Landfester, D. Crespy, Angew. Chem. Int. Ed. 2021, 60, 18094–18102;
- 4bA. Levin, T. O. Mason, L. Adler-Abramovich, A. K. Buell, G. Meisl, C. Galvagnion, Y. Bram, S. A. Stratford, C. M. Dobson, T. P. J. Knowles, E. Gazit, Nat. Commun. 2014, 5, 5219.
- 5
- 5aK. A. Rosowski, T. Sai, E. Vidal-Henriquez, D. Zwicker, R. W. Style, E. R. Dufresne, Nat. Phys. 2020, 16, 422–425;
- 5bC. Kataoka-Hamai, K. Kawakami, Langmuir. 2023, 39, 10001–10010.
- 6Y. S. Zhang, A. Khademhosseini, Science. 2017, 356, 500.
- 7
- 7aN. Jian, R. Guo, L. Zuo, Y. Sun, Y. Xue, J. Liu, K. Zhang, Adv. Mater. 2023, 35, e2210609;
- 7bR. K. T. Matsuda, R. Namba, T. Nakajima, J. P. Gong, Science 2019, 363, 504–508.
- 8
- 8aN. Rauner, M. Meuris, M. Zoric, J. C. Tiller, Nature. 2017, 543, 407–410;
- 8bD. Zhao, B. Pang, Y. Zhu, W. Cheng, K. Cao, D. Ye, C. Si, G. Xu, C. Chen, H. Yu, Adv. Mater. 2022, 34, e2107857.
- 9M. A. Ghanem, A. Basu, R. Behrou, N. Boechler, A. J. Boydston, S. L. Craig, Y. Lin, B. E. Lynde, A. Nelson, H. Shen, D. W. Storti, Nat. Rev. Mater. 2020, 6, 84–98.
- 10
- 10aI. Hwang, R. D. Mukhopadhyay, P. Dhasaiyan, S. Choi, S.-Y. Kim, Y. H. Ko, K. Baek, K. Kim, Nat. Chem. 2020, 12, 808–813;
- 10bQ. Zhang, S. Niu, L. Wang, J. Lopez, S. Chen, Y. Cai, R. Du, Y. Liu, J. C. Lai, L. Liu, C. H. Li, X. Yan, C. Liu, J. B. H. Tok, X. Jia, Z. Bao, Adv. Mater. 2018, 30, 1801435.
- 11J. Tropp, C. P. Collins, X. Xie, R. E. Daso, A. S. Mehta, S. P. Patel, M. M. Reddy, S. E. Levin, C. Sun, J. Rivnay, Adv. Mater. 2023.
- 12T. B. H. Schroeder, J. Aizenberg, Nat. Commun. 2022, 13, 259.
- 13J. Wei, G. Wei, Y. Shang, J. Zhou, C. Wu, Q. Wang, Adv. Mater. 2019, 31, 1900248.
- 14Y. Fang, X. Xiong, L. Yang, W. Yang, H. Wang, Q. Wu, Q. Liu, J. Cui, Adv. Funct. Mater. 2023, 33, 2301505.
- 15F. Xiao, Y. Sun, W. Du, W. Shi, Y. Wu, S. Liao, Z. Wu, R. Yu, Adv. Funct. Mater. 2017, 27, 1702141.
- 16L. Chen, C. Zhao, J. Huang, J. Zhou, M. Liu, Nat. Commun. 2022, 13, 6821.
- 17W. L. Noorduin, E. Vlieg, R. M. Kellogg, B. Kaptein, Angew. Chem. Int. Ed. 2009, 48, 9600–9606.
- 18K. T. Wei, D. L. Ward, Acta Crystallogr. Sect. B 1977, 33, 522–526.
- 19A. A. Chernov, Mod. Crystallogr. III. 1984, 36.
10.1007/978-3-642-81835-6 Google Scholar
- 20J. Du, Y. You, R. L. Reis, S. C. Kundu, J. Li, Adv. Colloid Interface Sci. 2023, 318, 102950.
- 21X. Y. Liu, P. D. Sawant, W. B. Tan, I. B. Noor, C. Pramesti, B. H. Chen, J. Am. Chem. Soc. 2002, 124, 15055–15063.
- 22A. H. R. B. Sina Naficy, A. B. Joselito, M. Razal, A. Geoffrey, M. Spinks, A. B. C. P. G. Whitten, Aust. J. Chem. 2011, 64, 1007–1025.
- 23H. Cho, G. Wu, J. Christopher Jolly, N. Fortoul, Z. He, Y. Gao, A. Jagota, S. Yang, Proc. Natl. Acad. Sci. USA 2019, 116, 13774–13779.
- 24P. Rao, T. L. Sun, L. Chen, R. Takahashi, G. Shinohara, H. Guo, D. R. King, T. Kurokawa, J. P. Gong, Adv. Mater. 2018, 30, 1801884.
- 25A. M. Rosales, S. L. Vega, F. W. DelRio, J. A. Burdick, K. S. Anseth, Angew. Chem. Int. Ed. 2017, 56, 12132–12136.
- 26C. Ni, D. Chen, Y. Yin, X. Wen, X. Chen, C. Yang, G. Chen, Z. Sun, J. Wen, Y. Jiao, C. Wang, N. Wang, X. Kong, S. Deng, Y. Shen, R. Xiao, X. Jin, J. Li, X. Kong, Q. Zhao, T. Xie, Nature. 2023, 622, 748–753.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.