Friedel–Crafts Acylation for Accessing Multi-Bridge-Functionalized Large Pillar[n]arenes
Dr. Tan-Hao Shi
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
Search for more papers by this authorProf. Dr. Shigehisa Akine
WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Ishikawa, Japan
Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Ishikawa, Japan
Search for more papers by this authorDr. Shunsuke Ohtani
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
Search for more papers by this authorDr. Kenichi Kato
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Tomoki Ogoshi
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Ishikawa, Japan
Search for more papers by this authorDr. Tan-Hao Shi
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
Search for more papers by this authorProf. Dr. Shigehisa Akine
WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Ishikawa, Japan
Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Ishikawa, Japan
Search for more papers by this authorDr. Shunsuke Ohtani
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
Search for more papers by this authorDr. Kenichi Kato
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Tomoki Ogoshi
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510 Kyoto, Japan
WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Ishikawa, Japan
Search for more papers by this authorAbstract
Pillar[n]arenes can be constructed using a Friedel–Crafts alkylation process. However, due to the reversible nature of the alkylation, mixture of large pillar[n]arenes (n≥7) are obtained as minor products, and thus laborious purification are necessary to isolate the larger pillar[n]arenes. Moreover, inert methylene bridges are introduced during the alkylation process, and the multi-functionalization of the bridges has never been investigated. Herein, an irreversible Friedel–Crafts acylation is used to prepare pillar[n]arenes. Due to the irreversible nature of the acylation, the reaction of precursors bearing carboxylic acids and electron-rich arene rings results in a size-exclusive formation of pillar[n]arenes, in which the ring-size is determined by the precursor length. Because of this size-selective formation, laborious separation of undesired macrocycles is not necessary. Moreover, the bridges of pillar[n]arenes are selectively installed with reactive carbonyl groups using the acylation method, whose positions are determined by the precursor used. The carbonyl bridges can be easily converted into versatile functional groups, leading to various laterally modified pillar[n]arenes, which cannot be accessed by the alkylation strategy.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202318268-sup-0001-10a.cif1.5 MB | Supporting Information |
ange202318268-sup-0001-misc_information.pdf12.2 MB | Supporting Information |
ange202318268-sup-0001-trans-11.cif3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. A. Carey, R. J. Sundberg in Advanced Organic Chemistry 5th edition Part B: Reaction and Synthesis, Springer US, Boston, 2007, pp. 1014–1024.
- 2“Industrial Friedel–Crafts Chemistry”: D. J. Macquarrie in Catalytic Asymmetric Friedel–Crafts Alkylations (Eds.: M. Bandini, A. Umani-Ronchi), Wiley Online Books, Hoboken, 2009, pp. 271–288.
10.1002/9783527626977.ch8 Google Scholar
- 3
- 3aM. M. Heravi, V. Zadsirjan, P. Saedi, T. Momeni, RSC Adv. 2018, 8, 40061–40163;
- 3bS. Li, M. Aljhdli, H. Thakellapalli, B. Farajidizaji, Y. Zhang, N. G. Akhmedov, C. Milsmann, B. V. Popp, K. K. Wang, Org. Lett. 2017, 19, 4078–4081;
- 3cY. Zhang, S. Tong, M.-X. Wang, Angew. Chem. Int. Ed. 2020, 59, 18151–18155;
- 3dJ.-H. Chen, Z.-Y. Jiang, H. Xiao, S. Tong, T.-H. Shi, J. Zhu, M.-X. Wang, Angew. Chem. Int. Ed. 2023, 62, 202301782.
- 4L. Kürti, B. Czakó in Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, Amsterdam, 2005, pp. 178–179.
- 5L. Kürti, B. Czakó in Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, Amsterdam, 2005, pp. 176–177.
- 6
- 6aHydrocarbons“: ”R. Schmidt, K. Griesbaum, A. Behr, D. Biedenkapp, H.-W. Voges, D. Garbe, C. Paetz, G. Collin, D. Mayer, H. Höke in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2014, pp. 1–74;
- 6bS. A. Ali, A. M. Aitani, C. Ercan, Y. Wang, S. Al-Khattaf, Chem. Eng. Res. Des. 2011, 89, 2125–2135.
- 7
- 7aC. D. Gutsche, Calixarenes, The Royal Society of Chemistry, Cambridge, 1989;
- 7bA. Ikeda, S. Shinkai, Chem. Rev. 1997, 97, 1713–1734.
- 8
- 8aA. G. S. Högberg, J. Am. Chem. Soc. 1980, 102, 6046–6050;
- 8bP. Della Sala, C. Gaeta, W. Navarra, C. Talotta, M. De Rosa, G. Brancatelli, S. Geremia, F. Capitelli, P. Neri, J. Org. Chem. 2016, 81, 5726–5731.
- 9
- 9aP. Anzenbacher, K. Jursíková, V. M. Lynch, P. A. Gale, J. L. Sessler, J. Am. Chem. Soc. 1999, 121, 11020–11021;
- 9bP. A. Gale, P. Jr. Anzenbacher, J. L. Sessler, Coord. Chem. Rev. 2001, 222, 57–102.
- 10
- 10aA. Collet, Tetrahedron 1987, 43, 5725–5759;
- 10bM. J. Hardie, Chem. Soc. Rev. 2010, 39, 516–527.
- 11
- 11aT. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022–5023;
- 11bT. Ogoshi, T. Yamagishi, Y. Nakamoto, Chem. Rev. 2016, 116, 7937–8002;
- 11cT.-H. Shi, S. Ohtani, K. Kato, S. Fa, T. Ogoshi, Trends Chem. 2023, 5, 537–550.
- 12
- 12aX.-B. Hu, Z. Chen, L. Chen, L. Zhang, J.-L. Hou, Z.-T. Li, Chem. Commun. 2012, 48, 10999–11001;
- 12bT. Ogoshi, N. Ueshima, F. Sakakibara, T. Yamagishi, T. Haino, Org. Lett. 2014, 16, 2896–2899.
- 13M. Xue, Y. Yang, X. Chi, Z. Zhang, F. Huang, Acc. Chem. Res. 2012, 45, 1294–1308.
- 14
- 14aX.-N. Han, Y. Han, C.-F. Chen, Chem. Soc. Rev. 2023, 52, 3265–3298;
- 14bZ. Liu, S. K. M. Nalluri, J. F. Stoddart, Chem. Soc. Rev. 2017, 46, 2459–2478.
- 15For bridge-functionalized calix[n]arenes, please see: “Preparation of methylene-substituted calixarenes”: S. E. Biali in Calixarenes and Beyond (Eds.: P. Neri, J. L. Sessler, M. X. Wang), Springer International Publishing, Cham, 2016, chap. 4, pp. 75–93.
10.1007/978-3-319-31867-7_4 Google Scholar
- 16For bridge-functionalized calix[n]pyrroles, please see:
- 16aZ. Lai, T. Zhao, J. L. Sessler, Q. He, Coord. Chem. Rev. 2020, 425, 213528;
- 16bS. Peng, Q. He, G. I. Vargas-Zúñiga, L. Qin, I. Hwang, S. K. Kim, N. J. Heo, C.-H. Lee, R. Dutta, J. L. Sessler, Chem. Soc. Rev. 2020, 49, 865–907.
- 17For bridge-functionalized resorcin[n]arenes, please see:
- 17aB. C. Gibb, R. G. Chapman, J. C. Sherman, J. Org. Chem. 1996, 61, 1505–1509;
- 17bA. Rafai Far, Y. Lag Cho, A. Rang, D. M. Rudkevich, J. Rebek, Tetrahedron 2002, 58, 741–755;
- 17cW. D. Seddon, L. Alfhaid, A. D. F. Dunbar, M. Geoghegan, N. H. Williams, Langmuir 2020, 36, 13843–13852.
- 18J. Cheng, B. Gao, H. Tang, Z. Sun, L. Xu, L. Wang, D. Cao, Sci. China Chem. 2022, 65, 539–545.
- 19L. Ling, S. Jiang, S. Lan, C. Zhang, D. Ma, Org. Lett. 2021, 23, 9327–9331.
- 20
- 20aS. Fu, G. An, H. Sun, Q. Luo, C. Hou, J. Xu, Z. Dong, J. Liu, Chem. Commun. 2017, 53, 9024–9027;
- 20bB. Han, L. Zhu, X. Wang, M. Bai, J. Jiang, Chem. Commun. 2018, 54, 837–840.
- 21
- 21aE. Meichsner, I. Nierengarten, M. Holler, M. Chessé, J.-F. Nierengarten, Helv. Chim. Acta 2018, 101, 1800059;
- 21bX. Tian, M. Zuo, P. Niu, K. Velmurugan, K. Wang, Y. Zhao, L. Wang, X.-Y. Hu, ACS Appl. Mater. Interfaces 2021, 13, 37466–37474;
- 21cK. Wang, R. Zhang, Z. Song, K. Zhang, X. Tian, S. Pangannaya, M. Zuo, X.-Y. Hu, Adv. Sci. 2023, 10, 2206897.
- 22N. L. Strutt, H. Zhang, S. T. Schneebeli, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2631–2642.
- 23
- 23aW. D. Emmons, K. S. McCallum, A. F. Ferris, J. Am. Chem. Soc. 1953, 75, 6047–6048;
- 23bC. Galli, Synthesis 1979, 1979, 303–304;
10.1055/s-1979-28661 Google Scholar
- 23cL. Cotos, M. Donzel, M. Elhabiri, E. Davioud-Charvet, Chem. Eur. J. 2020, 26, 3314–3325;
- 23dM. Buccini, M. J. Piggott, Org. Lett. 2014, 16, 2490–2493.
- 24T. Ogoshi, K. Kitajima, T. Aoki, S. Fujinami, T. Yamagishi, Y. Nakamoto, J. Org. Chem. 2010, 75, 3268–3273.
- 25
- 25aT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592;
- 25bT. Lu, Q. Chen, Theor. Chem. Acc. 2020, 139, 25.
- 26M.-S. Yuan, H. Chen, X. Du, J. Li, J. Wang, X.m Jia, C. Li, Chem. Commun. 2015, 51, 16361–16364.
- 27R. K. Venkatraman, A. J. Orr-Ewing, J. Am. Chem. Soc. 2019, 141, 15222.
- 28
- 28aM. Holler, N. Allenbach, J. Sonet, J.-F. Nierengarten, Chem. Commun. 2012, 48, 2576–2578;
- 28bT. Ogoshi, N. Ueshima, T. Akutsu, D. Yamafuji, T. Furuta, F. Sakakibara, T. Yamagishi, Chem. Commun. 2014, 50, 5774–5777.
- 29
- 29aJ. Blankenstein, J. Zhu, Eur. J. Org. Chem. 2005, 1949–1964;
- 29bV. Martí-Centelles, M. D. Pandey, M. I. Burguete, S. V. Luis, Chem. Rev. 2015, 115, 8736–8834.
- 30
- 30aM. Chen, I. Guzei, A. L. Rheingold, H. W. Gibson, Macromolecules 1997, 30, 2516–2518;
- 30bM. G. Zolotukhin, H. M. Colquhoun, L. G. Sestiaa, D. J. Williams, D. R. Rueda, D. Flot, Polymer 2004, 45, 783–790.
- 31Deposition numbers 2286707 (for 3 a), and 2286708 (for trans-4) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 32Z. Zhang, B. Xia, C. Han, Y. Yu, F. Huang, Org. Lett. 2010, 12, 3285–3287.
- 33J. Cao, Y. Shang, B. Qi, X. Sun, L. Zhang, H. Liu, H. Zhang, X. Zhou, RSC Adv. 2015, 5, 9993–9996.
- 34
- 34aA. D. Becke, Phys. Rev. A 1988, 38, 3098–3100;
- 34bA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
- 34cC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- 35R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724–728.
- 36S. Akine, TitrationFit, program for analyses of host–guest complexation, Kanazawa University, Kanazawa, Japan, 2013. (http://chem.s.kanazawa-u.ac.jp/coord/titrationfit_e.html).
- 37C. Han, L. Gao, G. Yu, Z. Zhang, S. Dong, F. Huang, Eur. J. Org. Chem. 2013, 2529–2532.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.