Ammonolysis of Glyoxal at the Air-Water Nanodroplet Interface
Zegang Dong
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Joseph S. Francisco
Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, PA-19104 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Bo Long
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025 China
Search for more papers by this authorZegang Dong
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Joseph S. Francisco
Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, PA-19104 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Bo Long
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025 China
Search for more papers by this authorAbstract
The reactions of glyoxal (CHO)2) with amines in cloud processes contribute to the formation of brown carbon and oligomer particles in the atmosphere. However, their molecular mechanisms remain unknown. Herein, we investigate the ammonolysis mechanisms of glyoxal with amines at the air-water nanodroplet interface. We identified three and two distinct pathways for the ammonolysis of glyoxal with dimethylamine and methylamine by using metadynamics simulations at the air-water nanodroplet interface, respectively. Notably, the stepwise pathways mediated by the water dimer for the reactions of glyoxal with dimethylamine and methylamine display the lowest free energy barriers of 3.6 and 4.9 kcal ⋅ mol−1, respectively. These results showed that the air-water nanodroplet ammonolysis reactions of glyoxal with dimethylamine and methylamine were more feasible and occurred at faster rates than the corresponding gas phase ammonolysis, the OH+(CHO)2 reaction, and the aqueous phase reaction of glyoxal, leading to the dominant removal of glyoxal. Our results provide new and important insight into the reactions between carbonyl compounds and amines, which are crucial in forming nitrogen-containing aerosol particles.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316060-sup-0001-misc_information.pdf4.4 MB | Supporting Information |
ange202316060-sup-0001-Movie_S1a.mpg5.5 MB | Supporting Information |
ange202316060-sup-0001-Movie_S1b.mpg15.1 MB | Supporting Information |
ange202316060-sup-0001-Movie_S2a.mpg3.4 MB | Supporting Information |
ange202316060-sup-0001-Movie_S2b.mpg4.9 MB | Supporting Information |
ange202316060-sup-0001-Movie_S2c.mpg5.4 MB | Supporting Information |
ange202316060-sup-0001-Movie_S3a.mpg3.2 MB | Supporting Information |
ange202316060-sup-0001-Movie_S3b.mpg4 MB | Supporting Information |
ange202316060-sup-0001-Movie_S4.mpg3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. M. Waxman, K. Dzepina, B. Ervens, J. Lee-Taylor, B. Aumont, J. L. Jimenez, S. Madronich, R. Volkamer, Geophys. Res. Lett. 2013, 40, 978–982. https://doi.org/10.1002/GRL.50203.
- 2T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, D. K. Henze, J. Geophys. Res. [Atmos.] 2008, 113, D15303. https://doi.org/10.1029/2007JD009505.
- 3T. Yli-Juuti, T. Mielonen, L. Heikkinen, A. Arola, M. Ehn, S. Isokääntä, H. M. Keskinen, M. Kulmala, A. Laakso, A. Lipponen, K. Luoma, S. Mikkonen, T. Nieminen, P. Paasonen, T. Petäjä, S. Romakkaniemi, J. Tonttila, H. Kokkola, A. Virtanen, Nat. Commun. 2021, 12, 5637.
- 4M. M. Galloway, M. H. Powelson, N. Sedehi, S. E. Wood, K. D. Millage, J. A. Kononenko, A. D. Rynaski, D. O. De Haan, Environ. Sci. Technol. 2014, 48, 14417–14425.
- 5R. Zhang, M. Gen, Z. Liang, Y. J. Li, C. K. Chan, Environ. Sci. Technol. 2022, 56, 1605–1614.
- 6C. Knote, A. Hodzic, J. L. Jimenez, R. Volkamer, J. J. Orlando, S. Baidar, J. Brioude, J. Fast, D. R. Gentner, A. H. Goldstein, P. L. Hayes, W. B. Knighton, H. Oetjen, A. Setyan, H. Stark, R. Thalman, G. Tyndall, R. Washenfelder, E. Waxman, Q. Zhang, Atmos. Chem. Phys. 2014, 14, 6213–6239.
- 7J. Hu, P. Wang, Q. Ying, H. Zhang, J. Chen, X. Ge, X. Li, J. Jiang, S. Wang, J. Zhang, Y. Zhao, Y. Zhang, Atmos. Chem. Phys. 2017, 17, 77–92.
- 8R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, M. J. Molina, Geophys. Res. Lett. 2007, 34, L19807.
- 9R. A. Washenfelder, C. J. Young, S. S. Brown, W. M. Angevine, E. L. Atlas, D. R. Blake, D. M. Bon, M. J. Cubison, J. A. De Gouw, S. Dusanter, J. Flynn, J. B. Gilman, M. Graus, S. Griffith, N. Grossberg, P. L. Hayes, J. L. Jimenez, W. C. Kuster, B. L. Lefer, I. B. Pollack, T. B. Ryerson, H. Stark, P. S. Stevens, M. K. Trainer, J. Geophys. Res. [Atmos.] 2011, 116, D00V02.
- 10N. Li, T. M. Fu, J. Cao, S. Lee, X. F. Huang, L. Y. He, K. F. Ho, J. S. Fu, Y. F. Lam, Atmos. Environ. 2013, 76, 200–207.
- 11R. J. Salter, M. A. Blitz, D. E. Heard, M. J. Pilling, P. W. Seakins, Phys. Chem. Chem. Phys. 2013, 15, 6516–6526.
- 12R. J. Salter, M. A. Blitz, D. E. Heard, T. Kovács, M. J. Pilling, A. R. Rickard, P. W. Seakins, Phys. Chem. Chem. Phys. 2013, 15, 4984–4994.
- 13J. Lockhart, M. Blitz, D. Heard, P. Seakins, R. Shannon, J. Phys. Chem. A 2013, 117, 11027–11037.
- 14J. Liggio, S. M. Li, R. McLaren, J. Geophys. Res. 2005, 110, D10304.
- 15B. Ervens, B. J. Turpin, R. J. Weber, Atmos. Chem. Phys. 2011, 11, 11069–11102.
- 16M. H. Powelson, B. M. Espelien, L. N. Hawkins, M. M. Galloway, D. O. De Haan, Environ. Sci. Technol. 2014, 48, 985–993.
- 17D. O. De Haan, L. N. Hawkins, K. Jansen, H. G. Welsh, R. Pednekar, A. De Loera, N. G. Jimenez, M. A. Tolbert, M. Cazaunau, A. Gratien, A. Bergé, E. Pangui, P. Formenti, J. F. Doussin, Atmos. Chem. Phys. 2020, 20, 9581–9590.
- 18J. Kua, H. E. Krizner, D. O. De Haan, J. Phys. Chem. A 2011, 115, 1667–1675.
- 19T. B. Nguyen, P. B. Lee, K. M. Updyke, D. L. Bones, J. Laskin, A. Laskin, S. A. Nizkorodov, J. Geophys. Res. [Atmos.] 2012, 117, D01207.
- 20D. O. De Haan, M. A. Tolbert, J. L. Jimenez, Geophys. Res. Lett. 2009, 36, 2–6.
- 21V. P. Tuguldurova, O. V. Vodyankina, A. V. Fateev, Phys. Chem. Chem. Phys. 2022, 24, 9394–9402.
- 22X. Lian, G. Zhang, Y. Yang, Q. Lin, Y. Fu, F. Jiang, L. Peng, X. Hu, D. Chen, X. Wang, P. Peng, G. Sheng, X. Bi, Environ. Sci. Technol. Lett. 2021, 8, 9–15.
- 23W. Marrero-Ortiz, M. Hu, Z. Du, Y. Ji, Y. Wang, S. Guo, Y. Lin, M. Gomez-Hermandez, J. Peng, Y. Li, J. Secrest, M. L. Zamora, Y. Wang, T. An, R. Zhang, Environ. Sci. Technol. 2019, 53, 117–126.
- 24V. P. Tuguldurova, A. V. Fateev, O. K. Poleshchuk, O. V. Vodyankina, Phys. Chem. Chem. Phys. 2019, 21, 9326–9334.
- 25I. H. Williams, J. Am. Chem. Soc. 1987, 109, 6299–6307.
- 26Y. Wei, Q. Zhang, W. Wang, Q. Wang, Atmos. Environ. 2023, 294, 119462.
- 27X. Ge, A. S. Wexler, S. L. Clegg, Atmos. Environ. 2011, 45, 524–546.
- 28W. Zhang, J. Zhong, Q. Shi, L. Gao, Y. Ji, G. Li, T. An, J. S. Francisco, J. Am. Chem. Soc. 2021, 143, 1171–1178.
- 29L. Yao, O. Garmash, F. Bianchi, J. Zheng, C. Yan, J. Kontkanen, H. Junninen, S. B. Mazon, M. Ehn, P. Paasonen, M. Sipilä, M. Wang, X. Wang, S. Xiao, H. Chen, Y. Lu, B. Zhang, D. Wang, Q. Fu, F. Geng, L. Li, H. Wang, L. Qiao, X. Yang, J. Chen, V. M. Kerminen, T. Petäjä, D. R. Worsnop, M. Kulmala, L. Wang, Science 2018, 361, 278–281.
- 30M. K. Louie, J. S. Francisco, M. Verdicchio, S. J. Klippenstein, A. Sinha, J. Phys. Chem. A 2016, 120, 1358–1368.
- 31Z. G. Dong, F. Xu, E. Mitchell, B. Long, Atmos. Environ. 2021, 249, 118242.
- 32Q. Shi, W. Zhang, Y. Ji, J. Wang, D. Qin, J. Chen, Y. Gao, G. Li, T. An, Environ. Sci.-Nano 2020, 7, 1126–1135.
- 33S. Biswas, H. Kwon, K. C. Barsanti, N. Myllys, J. N. Smith, B. M. Wong, Phys. Chem. Chem. Phys. 2020, 22, 26265–26277.
- 34K. W. Butz, D. J. Krajnovich, C. S. Parmenter, J. Chem. Phys. 1990, 93, 1557–1567.
- 35J. Zhong, M. A. Carignano, S. Kais, X. C. Zeng, J. S. Francisco, I. Gladich, J. Am. Chem. Soc. 2018, 140, 5535–5543.
- 36Z. G. Dong, F. Xu, B. Long, Comput. Theor. Chem. 2018, 1140, 7–13.
- 37S. Mallick, P. Kumar, J. Phys. Chem. A 2018, 122, 7151–7159.
- 38B. Long, J. L. Bao, D. G. Truhlar, Nat. Commun. 2019, 10, 2003.
- 39B. Long, J. L. Bao, D. G. Truhlar, J. Am. Chem. Soc. 2016, 138, 14409–14422.
- 40B. Long, Y. Wang, Y. Xia, X. He, J. L. Bao, D. G. Truhlar, J. Am. Chem. Soc. 2021, 143, 8402–8413.
- 41R. J. Buszek, J. S. Francisco, J. M. Anglada, Int. Rev. Phys. Chem. 2011, 30, 335–369.
- 42S. Wang, X. C. Zeng, H. Li, J. S. Francisco, Chem. Sci. 2020, 11, 2093–2102.
- 43J. R. Yang, A. Liu, B. Long, Environ. Sci. Atmos. 2023, 3, 672–682.
- 44M. F. Ruiz-Lopez, J. S. Francisco, M. T. C. Martins-Costa, J. M. Anglada, Nat. Chem. Rev. 2020, 4, 459–475.
- 45C. Q. Zhu, S. Kais, X. C. Zeng, J. S. Francisco, I. Gladich, J. Am. Chem. Soc. 2017, 139, 27–30.
- 46M. Cascella, S. Raugei, P. Carloni, J. Phys. Chem. B 2004, 108, 369–375.
- 47L. Gorb, A. Asensio, I. Tuñón, M. F. Ruiz-López, Chem. Eur. J. 2005, 11, 6743–6753.
- 48D. Zahn, Eur. J. Org. Chem. 2004, 4020–4023.
- 49D. Stone, L. K. Whalley, D. E. Heard, Chem. Soc. Rev. 2012, 41, 6348–6404.
- 50J. Lelieveld, S. Gromov, A. Pozzer, D. Taraborrelli, Atmos. Chem. Phys. 2016, 16, 12477–12493.
- 51M. A. H. Khan, M. J. Ashfold, G. Nickless, D. Martin, L. A. Watson, P. D. Hamer, R. P. Wayne, C. E. Canosa-Mas, D. E. Shallcross, Atmos. Sci. Lett. 2008, 9, 140–146.
- 52M. J. Perri, Y. B. Lim, S. P. Seitzinger, B. J. Turpin, Atmos. Environ. 2010, 44, 2658–2664.
- 53X. Zhao, X. Shi, X. Ma, C. Zuo, H. Wang, F. Xu, Y. Sun, Q. Zhang, Sci. Total Environ. 2020, 723, 137987.
- 54Y. Wang, Y. Zhao, Y. Wang, J. Z. Yu, J. Shao, P. Liu, W. Zhu, Z. Cheng, Z. Li, N. Yan, H. Xiao, Atmos. Chem. Phys. 2021, 21, 2959–2980.
- 55M. K. Hazra, J. S. Francisco, A. Sinha, J. Phys. Chem. A 2014, 118, 4095–4105.
- 56D. Xia, J. Chen, H. Bin Xie, J. Zhong, J. S. Francisco, J. Am. Chem. Soc. 2023, 145, 4791–4799.
- 57M. F. Ruiz-López, M. T. C. Martins-Costa, Phys. Chem. Chem. Phys. 2022, 24, 29700–29704.
- 58A. R. Ravishankara, Science 1997, 276, 1058–1065.
- 59L. Yang, R. J. Huang, J. Shen, T. Wang, Y. Gong, W. Yuan, Y. Liu, H. Huang, Q. You, D. D. Huang, C. Huang, Environ. Sci. Technol. 2023, 57, 12351–12361.
- 60A. Maxut, B. Nozière, B. Fenet, H. Mechakra, Phys. Chem. Chem. Phys. 2015, 17, 20416–20424.
- 61J. Li, Z. Han, Y. Sun, J. Li, L. Liang, Atmos. Environ. 2021, 244, 117996.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.