Corner Engineering: Tailoring Enzymes for Enhanced Resistance and Thermostability in Deep Eutectic Solvents
Xinyue Wang
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
These authors contributed equally to this work.
Search for more papers by this authorYijie Sheng
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Haiyang Cui
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
Current address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801 USA
These authors contributed equally to this work.
Search for more papers by this authorJie Qiao
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorYibo Song
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiujuan Li
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorCorresponding Author
Prof. Dr. He Huang
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorXinyue Wang
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
These authors contributed equally to this work.
Search for more papers by this authorYijie Sheng
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Haiyang Cui
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
Current address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801 USA
These authors contributed equally to this work.
Search for more papers by this authorJie Qiao
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorYibo Song
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiujuan Li
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorCorresponding Author
Prof. Dr. He Huang
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097 China
Search for more papers by this authorAbstract
Deep eutectic solvents (DESs), heralded for their synthesis simplicity, economic viability, and reduced volatility and flammability, have found increasing application in biocatalysis. However, challenges persist due to a frequent diminution in enzyme activity and stability. Herein, we developed a general protein engineering strategy, termed corner engineering, to acquire DES-resistant and thermostable enzymes via precise tailoring of the transition region in enzyme structure. Employing Bacillus subtilis lipase A (BSLA) as a model, we delineated the engineering process, yielding five multi-DESs resistant variants with highly improved thermostability, such as K88E/N89 K exhibited up to a 10.0-fold catalytic efficiency (kcat/KM) increase in 30 % (v/v) choline chloride (ChCl): acetamide and 4.1-fold in 95 % (v/v) ChCl: ethylene glycol accompanying 6.7-fold thermal resistance improvement than wild type at ≈50 °C. The generality of the optimized approach was validated by two extra industrial enzymes, endo-β-1,4-glucanase PvCel5A (used for biofuel production) and esterase Bs2Est (used for plastics degradation). The molecular investigations revealed that increased water molecules at substrate binding cleft and finetuned helix formation at the corner region are two dominant determinants governing elevated resistance and thermostability. This study, coupling corner engineering with obtained molecular insights, illuminates enzyme-DES interaction patterns and fosters the rational design of more DES-resistant and thermostable enzymes in biocatalysis and biotransformation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315125-sup-0001-misc_information.pdf5.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. J. Clarke, W.-C. Tu, O. Levers, A. Bröhl, J. P. Hallett, Chem. Rev. 2018, 118, 747–800.
- 2N. Guajardo, P. Domínguez de María, ChemCatChem 2019, 11, 3128–3137.
- 3N. Guajardo, C. R. Müller, R. Schrebler, C. Carlesi, P. Domínguez de María, ChemCatChem 2016, 8, 1020–1027.
- 4B. B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, A. Ragauskas, M. Dadmun, T. A. Zawodzinski, G. A. Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Chem. Rev. 2021, 121, 1232–1285.
- 5S. M. Taklimi, A. Divsalar, B. Ghalandari, X. Ding, M. L. Di Gioia, K. A. Omar, A. A. Saboury, J. Mol. Liq. 2023, 377, 121562.
- 6M. Pätzold, S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, Trends Biotechnol. 2019, 37, 943–959.
- 7D. O. Abranches, J. A. P. Coutinho, Annu. Rev. Chem. Biomol. Eng. 2023, 14, 141–163.
- 8Q. Wen, J.-X. Chen, Y.-L. Tang, J. Wang, Z. Yang, Chemosphere 2015, 132, 63–69.
- 9S. Ghavam, M. Vahdati, I. A. G. Wilson, P. Styring, Front. Energy Res. 2021, 9, 580808.
- 10M. Wang, M. A. Khan, I. Mohsin, J. Wicks, A. H. Ip, K. Z. Sumon, C.-T. Dinh, E. H. Sargent, I. D. Gates, M. G. Kibria, Energy Environ. Sci. 2021, 14, 2535–2548.
- 11M. Hayyan, M. A. Hashim, A. Hayyan, M. A. Al-Saadi, I. M. AlNashef, M. E. S. Mirghani, O. K. Saheed, Chemosphere 2013, 90, 2193–2195.
- 12I. J. Ferreira, F. Oliveira, A. R. Jesus, A. Paiva, A. R. C. Duarte, J. Mol. Liq. 2022, 362, 119675.
- 13J. A. Kist, H. Zhao, K. R. Mitchell-Koch, G. A. Baker, J. Mater. Chem. B 2021, 9, 536–566.
- 14R. Kourist, J. González-Sabín, ChemCatChem 2020, 12, 1903–1912.
- 15S. Khodaverdian, B. Dabirmanesh, A. Heydari, E. Dashtban-moghadam, K. Khajeh, F. Ghazi, Int. J. Biol. Macromol. 2018, 107, 2574–2579.
- 16A. Uhoraningoga, G. K. Kinsella, G. T. Henehan, B. J. Ryan, Curr. Res. Green Sustainable Chem. 2021, 4, 100129.
- 17J. P. Bittner, N. Zhang, L. Huang, P. D. de María, S. Jakobtorweihen, S. Kara, Green Chem. 2022, 24, 1120–1131.
- 18H. Monhemi, M. R. Housaindokht, A. A. Moosavi-Movahedi, M. R. Bozorgmehr, Phys. Chem. Chem. Phys. 2014, 16, 14882.
- 19M. L. Toledo, M. M. Pereira, M. G. Freire, J. P. A. Silva, J. A. P. Coutinho, A. P. M. Tavares, ACS Sustainable Chem. Eng. 2019, 7, 11806–11814.
- 20A. E. Delorme, J.-M. Andanson, V. Verney, Int. J. Biol. Macromol. 2020, 163, 919–926.
- 21S. Varriale, A. E. Delorme, J.-M. Andanson, J. Devemy, P. Malfreyt, V. Verney, C. Pezzella, ACS Sustainable Chem. Eng. 2022, 10, 572–581.
- 22A. Sanchez-Fernandez, A. J. Jackson, S. F. Prévost, J. J. Doutch, K. J. Edler, J. Am. Chem. Soc. 2021, 143, 14158–14168.
- 23C. Lehmann, M. Bocola, W. R. Streit, R. Martinez, U. Schwaneberg, Appl. Microbiol. Biotechnol. 2014, 98, 5775–5785.
- 24X. Fang, X. Wang, G. Li, J. Zeng, J. Li, J. Liu, Int. J. Biol. Macromol. 2018, 111, 1032–1039.
- 25S. Danait-Nabar, R. S. Singhal, Bioprocess Biosyst. Eng. 2023, 46, 645–664.
- 26J. Wang, D. Rychkov, R. Gerhard, Appl. Phys. Lett. 2017, 110, 192901.
- 27J. Xu, G. Liu, Y. He, L. Zhou, L. Ma, Y. Liu, X. Zheng, J. Gao, Y. Jiang, Front. Chem. Sci. Eng. 2023, 17, 784–794.
- 28D. Wu, X.-L. Zheng, J. Wu, J. Chen, J. Biotechnol. 2010, 150, 359–359.
- 29L. Meyer, M. B. Andersen, S. Kara, Angew. Chem. Int. Ed. 2022, 61, e202203823.
- 30J. Qiao, Y. Sheng, M. Wang, A. Li, X. Li, H. Huang, Angew. Chem. Int. Ed. 2023, 62, e202300320.
- 31M. Wang, H. Cui, C. Gu, A. Li, J. Qiao, U. Schwaneberg, L. Zhang, J. Wei, X. Li, H. Huang, ACS Synth. Biol. 2023, 12, 2187–2197.
- 32H. Cui, L. Eltoukhy, L. Zhang, U. Markel, K. Jaeger, M. D. Davari, U. Schwaneberg, Angew. Chem. Int. Ed. 2021, 60, 11448–11456.
- 33J. C. Stevens, J. Shi, Front. Bioeng. Biotechnol. 2022, 10, 880795.
- 34F. Contreras, M. J. Thiele, S. Pramanik, A. M. Rozhkova, A. S. Dotsenko, I. N. Zorov, A. P. Sinitsyn, M. D. Davari, U. Schwaneberg, ACS Sustainable Chem. Eng. 2020, 8, 12388–12399.
- 35A. V. Shivange, A. Dennig, U. Schwaneberg, J. Biotechnol. 2014, 170, 68–72.
- 36H. Cui, M. D. Davari, U. Schwaneberg, in Enzyme Eng. (Eds.: F. Magnani, C. Marabelli, F. Paradisi), Springer US, New York, NY, 2022, pp. 71–81.
10.1007/978-1-0716-1826-4_5 Google Scholar
- 37M. T. Reetz, J. D. Carballeira, Nat. Protoc. 2007, 2, 891–903.
- 38S. Sen, V. Venkata Dasu, B. Mandal, Appl. Biochem. Biotechnol. 2007, 143, 212–223.
- 39E. M. Nordwald, J. L. Kaar, Biotechnol. Bioeng. 2013, 110, 2352–2360.
- 40E. M. Nordwald, R. Brunecky, M. E. Himmel, G. T. Beckham, J. L. Kaar, Biotechnol. Bioeng. 2014, 111, 1541–1549.
- 41H. Cui, L. Zhang, L. Eltoukhy, Q. Jiang, S. K. Korkunç, K.-E. Jaeger, U. Schwaneberg, M. D. Davari, ACS Catal. 2020, 10, 14847–14856.
- 42S. Pramanik, M. V. Semenova, A. M. Rozhkova, I. N. Zorov, O. Korotkova, A. P. Sinitsyn, M. D. Davari, Biotechnol. Bioeng. 2021, 118, 4014–4027.
- 43L. Yang, Z. Gao, Y. Cao, R. Xing, X. Zhang, ChemBioChem 2005, 6, 1191–1195.
- 44L. Sheng, J. Wang, M. Huang, Q. Xu, M. Ma, Int. J. Biol. Macromol. 2016, 92, 600–606.
- 45C. Ma, C. Liang, Y. Wang, M. Pan, Q. Jiang, C. Shi, ACS Comb. Sci. 2017, 19, 351–355.
- 46J. S. Fetrow, FASEB J. 1995, 9, 708–717.
- 47T. Smolarczyk, I. Roterman-Konieczna, K. Stapor, CBIO 2020, 15, 90–107.
- 48G. Qu, Y. Bi, B. Liu, J. Li, X. Han, W. Liu, Y. Jiang, Z. Qin, Z. Sun, Angew. Chem. Int. Ed. 2022, 61, e202110793.
- 49V. J. Frauenkron-Machedjou, A. Fulton, J. Zhao, L. Weber, K.-E. Jaeger, U. Schwaneberg, L. Zhu, Bioresour. Bioprocess. 2018, 5, 2.
- 50H. Cui, H. Cao, H. Cai, K. Jaeger, M. D. Davari, U. Schwaneberg, Chemistry A European J 2020, 26, 643–649.
- 51H. Cui, K. Jaeger, M. D. Davari, U. Schwaneberg, Chem. Eur. J. 2021, 27, 2789–2797.
- 52G. Cantelli, A. Bateman, C. Brooksbank, A. I. Petrov, R. S. Malik-Sheriff, M. Ide-Smith, H. Hermjakob, P. Flicek, R. Apweiler, E. Birney, J. McEntyre, Nucleic Acids Research 2022, 50, D11–D19.
- 53M. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha, A. Vogel, Angew. Chem. 2005, 117, 4264–4268.
10.1002/ange.200500767 Google Scholar
- 54H. Cui, M. Vedder, L. Zhang, K.-E. Jaeger, U. Schwaneberg, M. D. Davari, ChemSusChem 2022, 15, e202102551.
- 55Z. Sun, R. Lonsdale, X. Kong, J. Xu, J. Zhou, M. T. Reetz, Angew. Chem. Int. Ed. 2015, 54, 12410–12415.
- 56K. Kulińska, T. Kuliński, A. Lyubartsev, A. Laaksonen, R. W. Adamiak, Computers & Chemistry 2000, 24, 451–457.
- 57S. J. Charnock, T. D. Spurway, H. Xie, M.-H. Beylot, R. Virden, R. A. J. Warren, G. P. Hazlewood, H. J. Gilbert, Journal of Biological Chemistry 1998, 273, 32187–32199.
- 58H. Cui, S. Pramanik, K.-E. Jaeger, M. D. Davari, U. Schwaneberg, Green Chem. 2021, 23, 3474–3486.
- 59S. Pramanik, G. V. Dhoke, K.-E. Jaeger, U. Schwaneberg, M. D. Davari, ACS Sustainable Chem. Eng. 2019, 7, 11293–11302.
- 60J. Zhao, N. Jia, K. Jaeger, M. Bocola, U. Schwaneberg, Biotechnol. Bioeng. 2015, 112, 1997–2004.
- 61L. Weng, M. Toner, Phys. Chem. Chem. Phys. 2018, 20, 22455–22462.
- 62O. S. Hammond, D. T. Bowron, K. J. Edler, Angew. Chem. Int. Ed. 2017, 56, 9782–9785.
- 63B. Qiao, F. Jiménez-Ángeles, T. D. Nguyen, M. Olvera De La Cruz, Proc. Natl. Acad. Sci. USA 2019, 116, 19274–19281.
- 64D. Laage, T. Elsaesser, J. T. Hynes, Chem. Rev. 2017, 117, 10694–10725.
- 65Z. Sun, R. Lonsdale, L. Wu, G. Li, A. Li, J. Wang, J. Zhou, M. T. Reetz, ACS Catal. 2016, 6, 1590–1597.
- 66M. T. Reetz, L.-W. Wang, M. Bocola, Angew. Chem. Int. Ed. 2006, 45, 2494–2494.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.