Sulfonium Cation in the Service of π-Acid Catalysis**
Ruiping Li
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorDr. Mohammad Zafar
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorDr. David Danovich
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Formal analysis (lead)
Search for more papers by this authorDr. Vasudevan Subramaniyan
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorDr. Françoise Tibika
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Funding acquisition (equal), Writing - original draft (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Dr. Yuri Tulchinsky
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - original draft (equal)
Search for more papers by this authorRuiping Li
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorDr. Mohammad Zafar
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorDr. David Danovich
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Formal analysis (lead)
Search for more papers by this authorDr. Vasudevan Subramaniyan
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorDr. Françoise Tibika
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Funding acquisition (equal), Writing - original draft (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Dr. Yuri Tulchinsky
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - original draft (equal)
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-gh0w9).
Abstract
While still rare, cationic ligands offer much promise as tunable electron-withdrawing ligands for π-acid catalysis. Recently, we introduced pincer-type sulfonium cations into the list of available strongly π-acidic ancillary ligands. However, the M−S bond in sulfonium complexes of these ligands was found highly labile, precluding their catalytic applications. Herein we demonstrate that this obstacle can be overcome by increasing the rigidity of the sulfonium pincer scaffold. X-ray analyses confirm that despite bearing a formal positive charge, the sulfur atom of this newly designed sulfonium ligand maintains its coordination to the Pt(II)-center, while DFT calculations indicate that by doing so it strongly enhances the electrophilic character of the metal. Kinetic studies carried out on three model cycloisomerization reactions prove that such a tris-cationic sulfonium-Pt(II) complex is highly reactive, compared to its thioether-based analogue. This proof-of-concept study presents the first example of employing sulfonium-based ligands in homogeneous catalysis.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314997-sup-0001-combined_cif.cif4.3 MB | Supporting Information |
ange202314997-sup-0001-misc_information.pdf4.6 MB | Supporting Information |
ange202314997-sup-0001-XYZ-coorinates.pdf68.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239–3265;
- 1bA. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211;
- 1cE. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350;
- 1dA. Furstner, Acc. Chem. Res. 2014, 47, 925–938.
- 2
- 2aD. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403;
- 2bD. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351–3378;
- 2cR. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028–9072;
- 2dJ. L. Mascareñas, I. Varela, F. López, Acc. Chem. Res. 2019, 52, 465–479.
- 3
- 3aF. Inagaki, C. Matsumoto, Y. Okada, N. Maruyama, C. Mukai, Angew. Chem. Int. Ed. 2015, 54, 818–822;
- 3bM. Sircoglou, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem. Int. Ed. 2007, 46, 8583–8586.
- 4
- 4aH. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425–13432;
- 4bD. You, F. P. Gabbaï, J. Am. Chem. Soc. 2017, 139, 6843–6846;
- 4cS. Sen, I.-S. Ke, F. P. Gabbaï, Organometallics 2017, 36, 4224–4230;
- 4dD. You, H. Yang, S. Sen, F. P. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644–9651.
- 5
- 5aL. C. Wilkins, Y. Kim, E. D. Litle, F. P. Gabbai, Angew. Chem. Int. Ed. 2019, 58, 18266–18270;
- 5bD. Litle, L. C. Wilkins, F. P. Gabbaï, Chem. Sci. 2021, 12, 3929–3936;
- 5cM. J. Karimi, E. D. Litle, F. P. Gabbaï, Isr. J. Chem. 2022, e202200036;
- 5dY. Lo, F. P. Gabbaï, Angew. Chem. Int. Ed. 2019, 58, 10194–10197.
- 6
- 6aH. Buhl, C. Ganter, Chem. Commun. 2013, 49, 5417–5419;
- 6bP. Brüggemann, M. Wahl, S. Schwengers, H. Buhl, C. Ganter, Organometallics 2018, 37, 4276–4286.
- 7
- 7aJ. Petuskova, M. Patil, S. Holle, C. W. Lehmann, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2011, 133, 20758–20760;
- 7bJ. Carreras, M. Patil, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2012, 134, 16753–16758;
- 7cJ. Carreras, G. Gopakumar, L. Gu, A. Gimeno, P. Linowski, J. Petuskova, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2013, 135, 18815–18823;
- 7dM. Alcarazo, Chem. Eur. J. 2014, 20, 7868–7877.
- 8
- 8aR. D. Adams, C. Blankenship, B. E. Segmueller, M. Shiralian, J. Am. Chem. Soc. 1983, 105, 4319–4326;
- 8bT. Yoshida, T. Adachi, K. Sato, K. Baba, T. Kanokogi, J. Chem. Soc. Chem. Commun. 1993, 1511–1513.
- 9
- 9aR. Li, N. Barel, V. Subramaniyan, O. Cohen, F. Tibika, Y. Tulchinsky, Chem. Sci. 2022, 13, 4770–4778;
- 9bR. Li, N. Barel, V. Subramaniyan, R. Hoffman, F. Tibika, Y. Tulchinsky, Organometallics 2023, 42, 246–258.
- 10V. Subramaniyan, F. Tibika, Y. Tulchinsky, Inorg. Chem. 2023, 62, 123–136.
- 11Deposition numbers 2265127, 2265128 and 2265130 for [4](OTf), [5](SbF6)2, and [6](BF4)3 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 12
- 12aL. Bonnafoux, L. Ernst, F. R. Leroux, F. Colober, Eur. J. Inorg. Chem. 2011, 3387–3397;
- 12bJ. J. Race, M. J. Webb, T. M. Boyd, A. S. Weller, Eur. J. Inorg. Chem. 2022, e202200174.
- 13To obtain a Pt(II) complex of the new sulfonium ligand [4](OTf) we initially employed a protocol previously utilized for Pt(II) complexes of ligands I and II, i.e. via the preparation of PtX2 intermediates (X=Me or Cl) reference 9. However, as the rigid thioxanthone backbone was unable to acquire the a cis-κ2-P,P coordination mode, no such products could be obtained with either (COD)PtCl2 or (COD)PtMe2.
- 14Ligand [4](BF4) was prepared by double ion exchange from [4](OTf), as shown on Scheme and explained in SI, for avoiding counterion-mixed products.
- 15
- 15aD. J. H. Emslie, L. E. Harrington, H. A. Jenkins, C. M. Robertson, J. F. Britten, Organometallics 2008, 27, 5317–5325;
- 15bL. M. Suess, J. C. Peters, Organometallics 2012, 31, 5213–5222;
- 15cS.-Y. Siah, P−H. Leung, K. F. Mok, Polyhedron 1994, 13, 3253–3255.
- 16
- 16aY. Tulchinsky, S. Kozuch, P. Saha, M. Botoshansky, L. J. W. Shimonb, M. Gandelman, Chem. Sci. 2014, 5, 1305–1311;
- 16bR. Tonner, Foxler, B. Neumuller, W. Petz, G. Frenking, Angew. Chem. Int. Ed. 2006, 45, 8038–8042;
- 16cJ. F. Wishart, A. Bino, H. Taube, Inorg. Chem. 1986, 25, 3318–3321.
- 17
- 17aK. Takeuchi, H. Taniguchi, I. Tanigawa, S. Tsujimoto, T. Matsuo, H. Tanaka, K. Yoshizawa, F. Ozawa, Angew. Chem. Int. Ed. 2016, 55, 15347–15350;
- 17bH. Kameo, Y. Tanaka, Y. Shimoyama, D. Izumi, H. Matsuzaka, Y. Nakajima, P. Lavedan, A. L. Gac, D. Bourissou, Angew. Chem. Int. Ed. 2023, 62, e202301509;
- 17cH. Braunschweig, K. Gruss, K. Radacki, Angew. Chem. Int. Ed. 2007, 46, 7782–7784.
- 18T.-P. Lin, F. P. Gabbaï, J. Am. Chem. Soc. 2012, 134, 12230–12238.
- 19D. You, J. E. Smith, S. Sen, F. P. Gabbaï, Organometallics 2020, 39, 4169–4173.
- 20
- 20aT. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1755–1759;
- 20bT. Ziegler, A. Rauk, Theor. Chim. Acta 1977, 46, 1–10.
- 21
- 21aM. Mitoraj, A. Michalak, Organometallics 2007, 26, 6576–6580;
- 21bA. Michalak, M. Mitoraj, T. Ziegler, J. Phys. Chem. A 2008, 112, 1933–1939;
- 21cM. Mitoraj, A. Michalak, J. Mol. Model. 2007, 13, 347–355;
- 21dM. Mitoraj, A. Michalak, J. Mol. Model. 2008, 14, 681–687;
- 21eM. Mitoraj, H. Zhu, A. Michalak, T. Ziegler, Int. J. Quantum Chem. 2009, 109, 3379–3386.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.