Dearomative Insertion of Fluoroalkyl Carbenes into Azoles Leading to Fluoroalkyl Heterocycles with a Quaternary Center
Linxuan Li
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorYongquan Ning
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorHongzhu Chen
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorYongyue Ning
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorDr. Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorPeiqiu Liao
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorQingwen Zhu
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYong Ji
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorGraham de Ruiter
Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
Search for more papers by this authorCorresponding Author
Prof. Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLinxuan Li
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorYongquan Ning
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorHongzhu Chen
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorYongyue Ning
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorDr. Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorPeiqiu Liao
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorQingwen Zhu
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYong Ji
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorGraham de Ruiter
Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
Search for more papers by this authorCorresponding Author
Prof. Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorAbstract
The skeletal ring expansion of heteroarenes through carbene insertion is gaining popularity in synthetic chemistry. Efficient strategies for heterocyclic ring expansion to access heterocycles containing a fluoroalkyl quaternary carbon center through fluoroalkyl carbene insertion are highly desirable because of their broad applications in medicinal chemistry. Herein, we report a general strategy for the dearomative one-carbon insertion of azoles using fluoroalkyl N-triftosylhydrazones as fluoroalkyl carbene precursors, resulting in ring-expanded heterocycles in excellent yields with good functional-group compatibility. The broad generality of this methodology in the late-stage diversification of pharmaceutically interesting bioactive molecules and versatile transformations of the products has been demonstrated.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313807-sup-0001-136.cif209.2 KB | Supporting Information |
ange202313807-sup-0001-42.cif230.4 KB | Supporting Information |
ange202313807-sup-0001-90.cif117.4 KB | Supporting Information |
ange202313807-sup-0001-misc_information.pdf20.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886.
- 2W. K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369.
- 3Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422–518.
- 4Y. Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano, E. Gershonov, S. Saphier, J. Med. Chem. 2017, 60, 797–804.
- 5R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Chem. Soc. Rev. 2011, 40, 3496.
- 6S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330.
- 7O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475–4521.
- 8X. Wu, H. Neumann, M. Beller, Chem. Asian J. 2012, 7, 1744–1754.
- 9C. Alonso, E. M. de Marigorta, G. Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847–1935.
- 10A. Studer, Angew. Chem. Int. Ed. 2012, 51, 8950–8958.
- 11J. W. Corbett, S. S. Ko, J. D. Rodgers, L. A. Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond, S. Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K. Logue, G. L. Trainor, P. S. Anderson, S. K. Erickson-Viitanen, J. Med. Chem. 2000, 43, 2019–2030.
- 12S. Caron, N. M. Do, J. E. Sieser, P. Arpin, E. Vazquez, Org. Process Res. Dev. 2007, 11, 1015–1024.
- 13G. Magueur, B. Crousse, S. Charneau, P. Grellier, J.-P. BeÂgueÂ, D. Bonnet-Delpon, J. Med. Chem. 2004, 47, 2694–2699.
- 14I. Jlalia, N. Lensen, G. Chaume, E. Dzhambazova, L. Astasidi, R. Hadjiolova, A. Bocheva, T. Brigaud, Eur. J. Med. Chem. 2013, 62, 122–129.
- 15Y. Kohno, K. Awano, M. Miyashita, T. Ishizaki, K. Kuriyama, Y. Sakoe, S. Kudoh, K. Saito, E. Kojima, Bioorg. Med. Chem. Lett. 1997, 7, 1519–1524.
- 16Y. Ozoe, M. Asahi, F. Ozoe, K. Nakahira, T. Mita, Biochem. Biophys. Res. Commun. 2010, 391, 744–749.
- 17X. He, Y. Ji, C. Peng, B. Han, Adv. Synth. Catal. 2019, 361, 1923–1957.
- 18Y.-Y. Huang, X. Yang, Z. Chen, F. Verpoort, N. Shibata, Chem. Eur. J. 2015, 21, 8664–8684.
- 19K. Matoba, H. Kawai, T. Furukawa, A. Kusuda, E. Tokunaga, S. Nakamura, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2010, 49, 5762–5766.
- 20H. Kawai, S. Okusu, E. Tokunaga, H. Sato, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2012, 51, 4959–4962.
- 21H. Kawai, Z. Yuan, T. Kitayama, E. Tokunaga, N. Shibata, Angew. Chem. Int. Ed. 2013, 52, 5575–5579.
- 22C.-H. Ma, T.-R. Kang, L. He, Q.-Z. Liu, Eur. J. Org. Chem. 2014, 3981–3985.
- 23G. Huang, Z. Yin, X. Zhang, Chem. Eur. J. 2013, 19, 11992–11998.
- 24P. Li, Z. Chai, S.-L. Zhao, Y.-Q. Yang, H.-F. Wang, C.-W. Zheng, Y.-P. Cai, G. Zhao, S.-Z. Zhu, Chem. Commun. 2009, 45, 7369–7371.
- 25J. Mo, X. Chen, Y. R. Chi, J. Am. Chem. Soc. 2012, 134, 8810–8813.
- 26H. Xie, Y. Zhang, S. Zhang, X. Chen, W. Wang, Angew. Chem. Int. Ed. 2011, 50, 11773–11776.
- 27H.-N. Yuan, S. Wang, J. Nie, W. Meng, Q. Yao, J.-A. Ma, Angew. Chem. Int. Ed. 2013, 52, 3869–3873.
- 28B. Jiang, J. J. Dong, Y. G. Si, X. L. Zhao, Z. G. Huang, M. Xu, Adv. Synth. Catal. 2008, 350, 1360–1366.
- 29F.-G. Zhang, X.-Y. Zhu, S. Li, J. Nie, J.-A. Ma, Chem. Commun. 2012, 48, 11552.
- 30H. Xie, A. Song, X. Song, X. Zhang, W. Wang, Tetrahedron Lett. 2013, 54, 1409–1411.
- 31G. S. Kauffman, G. D. Harris, R. L. Dorow, B. R. P. Stone, R. L. Parsons, J. A. Pesti, N. A. Magnus, J. M. Fortunak, P. N. Confalone, W. A. Nugent, Org. Lett. 2000, 2, 3119–3121.
- 32B. Jiang, Y.-G. Si, Angew. Chem. Int. Ed. 2004, 43, 216–218.
- 33F.-G. Zhang, H. Ma, J. Nie, Y. Zheng, Q. Gao, J.-A. Ma, Adv. Synth. Catal. 2012, 354, 1422–1428.
- 34J. Jurczyk, J. Woo, S. F. Kim, B. D. Dherange, R. Sarpong, M. D. Levin, Nat. Synth. 2022, 1, 352–364.
- 35B. W. Joynson, L. T. Ball, Helv. Chim. Acta 2023, 106, e202200182.
- 36Z. Liu, P. Sivaguru, Y. Ning, Y. Wu, X. Bi, Chem. Eur. J. 2023, 29, e202301227.
- 37B. Biletskyi, P. Colonna, K. Masson, J.-L. Parrain, L. Commeiras, G. Chouraqui, Chem. Soc. Rev. 2021, 50, 7513–7538.
- 38J. R. Donald, W. P. Unsworth, Chem. Eur. J. 2017, 23, 8780–8799.
- 39P. Dowd, W. Zhang, Chem. Rev. 1993, 93, 2091–2115.
- 40A. N. Koronatov, N. V. Rostovskii, A. F. Khlebnikov, M. S. Novikov, J. Org. Chem. 2018, 83, 9210–9219.
- 41A. Adams, W. A. Freeman, A. Holland, D. Hossack, J. Inglis, M. J. Parkinson, H. W. Reading, K. Riveti, R. Slack, R. Sutherland, R. Wien, Nature 1960, 186, 221–222.
- 42R. Slack, K. R. H. Wooldridge, J. A. Mcfadzean, S. Squires, Nature 1964, 204, 587–587.
- 43X.-M. Peng, G.-X. Cai, C.-H. Zhou, Curr. Top. Med. Chem. 2013, 13, 1963–2010.
- 44H.-Z. Zhang, L.-L. Gan, H. Wang, C.-H. Zhou, Mini-Rev. Med. Chem. 2016, 17, 122–166.
- 45W. E. Dismukes, Clin. Infect. Dis. 2000, 30, 653–657.
- 46C. B. Vicentini, C. Romagnoli, E. Andreotti, D. Mares, J. Agric. Food Chem. 2007, 55, 10331–10338.
- 47N. A. Bumagin, V. I. Potkin, Russ. Chem. Bull. 2016, 65, 321–332.
- 48C. Kashima, Y. Miwa, S. Shibata, H. Nakazono, J. Heterocycl. Chem. 2003, 40, 681–688.
- 49A. V. Kletskov, N. A. Bumagin, F. I. Zubkov, D. G. Grudinin, V. I. Potkin, Synthesis 2020, 52, 159–188.
- 50F. Li, J. J. Hu, L. L. Koh, T. S. Hor, Dalton Trans. 2010, 39, 5231.
- 51A. J. Huckaba, T. K. Hollis, T. O. Howell, Valle, H. U. Y. Wu, Organometallics 2013, 32, 63–69.
- 52R. Kore, R. Srivastava, J. Mol. Catal. A 2011, 345, 117–126.
- 53Y. Tsuji, H. Ohno, RSC Adv. 2012, 2, 11279.
- 54E. E. Hyland, P. Q. Kelly, A. M. McKillop, B. D. Dherange, M. D. Levin, J. Am. Chem. Soc. 2022, 144, 19258–19264.
- 55Y. Zhou, F. Chen, Z. Li, J. Dong, J. Li, B. Zhang, Q. Song, Sci. China Chem. 2023, 66, 1975–1981.
- 56Z. Liu, P. Sivaguru, G. Zanoni, X. Bi, Acc. Chem. Res. 2022, 55, 1763–1781.
- 57P. Sivaguru, X. Bi, Sci. China Chem. 2021, 64, 1614–1629.
- 58Deposition numbers 2259039 (for 42), 2266762 (for 90), and 2287305 (for 136) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 59A. R. Ramesha, S. Bhat, S. Chandrasekaran, J. Org. Chem. 1995, 60, 7682–7683.
- 60A. Becker, C. P. Grugel, B. Breit, Org. Lett. 2021, 23, 3788–3792.
- 61M. A. Mohamed, K. Yamada, K. Tomioka, Tetrahedron Lett. 2009, 50, 3436–3438.
- 62Y. Wu, S. Cao, I. Douair, L. Maron, X. Bi, Chem. Eur. J. 2021, 27, 5999–6006.
- 63C.-Y. Chen, J.-H. Zhao, L.-X. Xiong, F. Wang, G. Yang, C. Ma, Org. Biomol. Chem. 2022, 20, 4101–4104.
- 64A. W. Oxford, R. J. Davis, R. A. Coleman, K. L. Clark, D. E. Clark, N. V. Harris, G. Penton, G. Hynd, K. A. J. Stuttle, J. M. Sutton, M. R.Ashton, E. A. Boyd, S. A. Brunton, EP2 Receptor angonists. WO2005080367A1 2005.
- 65Y. Guo, N. Li, J. Li, X. Bi, Z. Gao, Y.-N. Duan, J. Xiao, Commun. Chem. 2023, 6, 26.
- 66T. Stalling, K. Johannes, S. Polina, J. Martens, J. Heterocycl. Chem. 2013, 50, 654–659.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.