Polymer Modification Strategy to Modulate Reaction Microenvironment for Enhanced CO2 Electroreduction to Ethylene
Ting Deng
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Shuaiqiang Jia
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorChunjun Chen
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorJiapeng Jiao
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorXiao Chen
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorCheng Xue
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorWei Xia
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorDr. Xueqing Xing
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Qinggong Zhu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Haihong Wu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorProf. Dr. Mingyuan He
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Buxing Han
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorTing Deng
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Shuaiqiang Jia
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorChunjun Chen
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorJiapeng Jiao
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorXiao Chen
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorCheng Xue
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorWei Xia
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorDr. Xueqing Xing
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Qinggong Zhu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Haihong Wu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorProf. Dr. Mingyuan He
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Buxing Han
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162 China
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorAbstract
Modulation of the microenvironment on the electrode surface is one of the effective means to improve the efficiency of electrocatalytic carbon dioxide reduction (eCO2RR). To achieve high conversion rates, the phase boundary at the electrode surface should be finely controlled to overcome the limitation of CO2 solubility in the aqueous electrolyte. Herein, we developed a simple and efficient method to structure electrocatalyst with a superhydrophobic surface microenvironment by one-step co-electrodeposition of Cu and polytetrafluoroethylene (PTFE) on carbon paper. The super-hydrophobic Cu-based electrode displayed a high ethylene (C2H4) selectivity with a Faraday efficiency (FE) of 67.3 % at −1.25 V vs. reversible hydrogen electrode (RHE) in an H-type cell, which is 2.5 times higher than a regular Cu electrode without PTFE. By using PTFE as a surface modifier, the activity of eCO2RR is enhanced and water (proton) adsorption is inhibited. This strategy has the potential to be applied to other gas-conversion electrocatalysts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313796-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. Sullivan, A. Goryachev, I. A. Digdaya, X. Li, H. A. Atwater, D. A. Vermaas, C. Xiang, Nat. Catal. 2021, 4, 952–958;
- 1bL. J. Müller, A. Kätelhön, S. Bringezu, S. McCoy, S. Suh, R. Edwards, V. Sick, S. Kaiser, R. Cuéllar-Franca, A. El Khamlichi, J. H. Lee, N. von der Assen, A. Bardow, Energy Environ. Sci. 2020, 13, 2979–2992;
- 1cZ. Zhao, G. Lu, Adv. Energy Mater. 2023, 13, 2203138.
- 2
- 2aW. Ge, Y. Chen, Y. Fan, Y. Zhu, H. Liu, L. Song, Z. Liu, C. Lian, H. Jiang, C. Li, J. Am. Chem. Soc. 2022, 144, 6613–6622;
- 2bM. Sun, H. H. Wong, T. Wu, Q. Lu, L. Lu, C. H. Chan, B. Chen, A. W. Dougherty, B. Huang, Adv. Energy Mater. 2023, 13, 2203858.
- 3
- 3aK. Zhao, X. Quan, ACS Catal. 2021, 11, 2076–2097;
- 3bQ. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Angew. Chem. Int. Ed. 2020, 59, 8896–8901.
- 4
- 4aH. Yuan, Z. Li, X. C. Zeng, J. Yang, J. Phys. Chem. Lett. 2020, 11, 3481–3487;
- 4bD. T. Whipple, P. J. A. Kenis, J. Phys. Chem. Lett. 2010, 1, 3451–3458;
- 4cP. Saha, S. Amanullah, A. Dey, Acc. Chem. Res. 2022, 55, 134–144.
- 5
- 5aJ. Y. Kim, C. H. Ryu, J. H. Lee, A. U. Pawar, W.-D. Jang, Y. S. Kang, H. S. Ahn, ACS Appl. Energ. Mater. 2020, 3, 6670–6677;
- 5bH. Li, N. Zhang, S. Bai, L. Zhang, F. Lai, Y. Chen, X. Zhu, T. Liu, Chem. Mater. 2022, 34, 7995–8003.
- 6
- 6aJ. J. Velasco-Velez, C. H. Chuang, D. Gao, Q. Zhu, D. Ivanov, H. S. Jeon, R. Arrigo, R. V. Mom, E. Stotz, H. L. Wu, T. E. Jones, B. Roldan Cuenya, A. Knop-Gericke, R. Schlogl, ACS Catal. 2020, 10, 11510–11518;
- 6bS. Mu, L. Li, R. Zhao, H. Lu, H. Dong, C. Cui, ACS Appl. Mater. Interfaces 2021, 13, 47619–47628;
- 6cH. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, J. Am. Chem. Soc. 2019, 141, 4624–4633.
- 7
- 7aJ. Chen, X. Wei, R. Cai, J. Ren, M. Ju, X. Lu, X. Long, S. Yang, ACS Mater. Lett. 2022, 4, 497–504;
- 7bB. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu, F. Peng, ACS Appl. Mater. Interfaces 2018, 10, 20530–20539;
- 7cY. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, B. Li, Y. Zong, L. Gu, J. Wang, X. Wang, H. Zhang, J. Am. Chem. Soc. 2020, 142, 12760–12766.
- 8
- 8aZ. Ma, C. Tsounis, C. Y. Toe, P. V. Kumar, B. Subhash, S. Xi, H. Y. Yang, S. Zhou, Z. Lin, K.-H. Wu, R. J. Wong, L. Thomsen, N. M. Bedford, X. Lu, Y. H. Ng, Z. Han, R. Amal, ACS Catal. 2022, 12, 4792–4805;
- 8bG. H. Simon, C. S. Kley, B. Roldan Cuenya, Angew. Chem. Int. Ed. 2021, 60, 2561–2568.
- 9
- 9aZ. Yin, C. Yu, Z. Zhao, X. Guo, M. Shen, N. Li, M. Muzzio, J. Li, H. Liu, H. Lin, J. Yin, G. Lu, D. Su, S. Sun, Nano Lett. 2019, 19, 8658–8663;
- 9bM. Ferri, L. Delafontaine, S. Guo, T. Asset, P. Cristiani, S. Campisi, A. Gervasini, P. Atanassov, ACS Energy Lett. 2022, 7, 2304–2310;
- 9cJ.-C. Jiang, J.-C. Chen, M.-D. Zhao, Q. Yu, Y.-G. Wang, J. Li, Nano Res. 2022, 15, 7116–7123.
- 10
- 10aQ. Chang, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, N. S. Marinkovic, A. A. Park, S. Kattel, J. G. Chen, JACS Au 2022, 2, 214–222;
- 10bY. Li, Z. Tian, L. Chen, J. Phys. Chem. C 2021, 125, 21381–2138.
- 11
- 11aS. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang, T. E. Rufford, J. Mater. Chem. A 2020, 8, 1511–1544;
- 11bY. C. Tan, K. B. Lee, H. Song, J. Oh, Joule 2020, 4, 1104–1120;
- 11cX. Wang, A. Xu, F. Li, S. F. Hung, D. H. Nam, C. M. Gabardo, Z. Wang, Y. Xu, A. Ozden, A. S. Rasouli, A. H. Ip, D. Sinton, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 3525–3531.
- 12X. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong, G. Wang, L. Xiao, J. Lu, L. Zhuang, ACS Catal. 2020, 10, 4103–4111.
- 13Y. Li, Z. Pei, D. Luan, X. W. D. Lou, Angew. Chem. Int. Ed. 2023, 62, e202302128.
- 14
- 14aZ. Xing, L. Hu, D. S. Ripatti, X. Hu, X. Feng, Nat. Commun. 2021, 12, 136;
- 14bA. K. Buckley, M. Lee, T. Cheng, R. V. Kazantsev, D. M. Larson, W. A. Goddard, III, F. D. Toste, F. M. Toma, J. Am. Chem. Soc. 2019, 141, 7355–7364.
- 15M. Zhang, T. Zhao, C. Yu, Q. Liu, G. Wang, H. Yang, M. Yang, L. Jiang, M. Liu, Nano Res. 2022, 15, 557–563.
- 16A. Tang, M. Wang, W. Huang, X. Wang, Surf. Coat. Technol. 2015, 282, 121–128.
- 17C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360, 783–787.
- 18
- 18aM. Philip, A. R. Woldu, M. B. Akbar, H. Louis, H. Cong, Nanoscale 2021, 13, 3042–3048;
- 18bA. Dutta, M. Rahaman, B. Hecker, J. Drnec, K. Kiran, I. Zelocualtecatl Montiel, D. Jochen Weber, A. Zanetti, A. Cedeño López, I. Martens, P. Broekmann, M. Oezaslan, J. Catal. 2020, 389, 592–603.
- 19C. Liu, X.-D. Zhang, J.-M. Huang, M.-X. Guan, M. Xu, Z.-Y. Gu, ACS Catal. 2022, 12, 15230–15240.
- 20
- 20aS. Jia, Q. Zhu, H. Wu, M. E. Chu, S. Han, R. Feng, J. Tu, J. Zhai, B. Han, Chin. J. Catal. 2020, 41, 1091–1098;
- 20bD. Ferrah, A. R. Haines, R. P. Galhenage, J. P. Bruce, A. D. Babore, A. Hunt, I. Waluyo, J. C. Hemminger, ACS Catal. 2019, 9, 6783–6802;
- 20cN. Altaf, S. Liang, L. Huang, Q. Wang, J. Energy Chem. 2020, 48, 169–180.
- 21
- 21aY. Lum, B. Yue, P. Lobaccaro, A. T. Bell, J. W. Ager, J. Phys. Chem. C 2017, 121, 14191–14203;
- 21bM. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, A. T. Bell, J. Am. Chem. Soc. 2016, 138, 13006–13012.
- 22
- 22aH. Liu, J. Liu, B. Yang, ACS Catal. 2021, 11, 12336–12343;
- 22bA. S. Malkani, J. Anibal, B. Xu, ACS Catal. 2020, 10, 14871–14876;
- 22cJ. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, J. Am. Chem. Soc. 2017, 139, 11277–11287.
- 23D. Gao, I. T. McCrum, S. Deo, Y.-W. Choi, F. Scholten, W. Wan, J. G. Chen, M. J. Janik, B. Roldan Cuenya, ACS Catal. 2018, 8, 10012–10020.
- 24R. M. Aran-Ais, D. Gao, B. Roldan Cuenya, Acc. Chem. Res. 2018, 51, 2906–2917.
- 25S. Jia, Q. Zhu, M. Chu, S. Han, R. Feng, J. Zhai, W. Xia, M. He, H. Wu, B. Han, Angew. Chem. Int. Ed. 2021, 60, 10977–10982.
- 26W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren, Y. Yu, J. Am. Chem. Soc. 2020, 142, 11417–11427.
- 27H.-Q. Liang, S. Zhao, X.-M. Hu, M. Ceccato, T. Skrydstrup, K. Daasbjerg, ACS Catal. 2021, 11, 958–966.
- 28G. Y. Duan, X. Q. Li, G. R. Ding, L. J. Han, B. H. Xu, S. J. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202110657.
- 29W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478–487.
- 30
- 30aZ. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, P. Yang, C. J. Chang, J. Am. Chem. Soc. 2016, 138, 8120–8125;
- 30bR. Xia, S. Zhang, X. Ma, F. Jiao, J. Mater. Chem. A 2020, 8, 15884–15890.
- 31H. Dong, M. Lu, Y. Wang, H.-L. Tang, D. Wu, X. Sun, F.-M. Zhang, Appl. Catal. B 2022, 303, 120897.
- 32C. Kim, J. C. Bui, X. Luo, J. K. Cooper, A. Kusoglu, A. Z. Weber, A. T. Bell, Nat. Energy 2021, 6, 1026–1034.
- 33D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Nat. Mater. 2019, 18, 1222–1227.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.