Fast Isomerization Before Isomerization-Hydroformylation: Probing the Neglected Period with A Novel Microfluidic Device
Dr. Fanfu Guan
Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000 China
These authors contributed equally to this work.
Search for more papers by this authorYu Qian
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorPeiqi Zhang
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
Search for more papers by this authorDr. Runtong Zhang
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Xumu Zhang
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Dr. Jialin Wen
Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000 China
Search for more papers by this authorDr. Fanfu Guan
Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000 China
These authors contributed equally to this work.
Search for more papers by this authorYu Qian
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorPeiqi Zhang
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
Search for more papers by this authorDr. Runtong Zhang
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Xumu Zhang
Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Dr. Jialin Wen
Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000 China
Search for more papers by this authorAbstract
By combining the concept of flash chemistry and radial synthesis, a novel microreactor (Flashstop reactor) was designed to study isomerization process of hydroformylation by a Rh/tetraphosphite catalyst in a time scale of seconds. It was found that in the initial 313 seconds, 60–99 % of 1-octene was isomerized to 2- and 3-octenes before the formation of aldehydes. Within this period, two different types of isomerization reactions were observed. It was proposed that a monohydride complex without CO ligand accounts for the ultrafast isomerization in the initial 30 seconds. The isomerization rate with such monohydride species was calculated much faster than that with the well-known H(CO)Rh(P−P) species. Both experimental and DFT computational studies were carried out to support this assumption. Fast transformations early on in catalytic cycles have been rarely studied due to the lack of proper tools. We believe that the Flashstop reactor is a powerful tool for analysis of kinetics in gas-liquid biphasic reactions within a time scale of seconds to minutes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202302777-sup-0001-misc_information.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 112, 5675–5732.
- 2
- 2aM. Vilches-Herrera, L. Domke, A. Börner, ACS Catal. 2014, 4, 1706–1724;
- 2bB. Zhang, D. Peña Fuentes, A. Börner, ChemTexts 2021, 7, 2.
- 3
- 3aD. Evans, J. A. Osborn, G. Wilkinson, J. Chem. Soc. A 1968, 3133–3142;
- 3bB. Breit, W. Seiche, Synthesis 2001, 1–36;
- 3cC. Kubis, R. Ludwig, M. Sawall, K. Neymeyr, A. Börner, K.-D. Wiese, D. Hess, R. Franke, D. Selent, ChemCatChem 2010, 2, 287–295;
- 3dA. Jörke, A. Seidel-Morgenstern, C. Hamel, J. Mol. Catal. A 2017, 426, 10–14.
- 4A. Jörke, E. Kohls, S. Triemer, A. Seidel-Morgenstern, C. Hamel, M. Stein, Chem. Eng. Process. 2016, 102, 229–237.
- 5A. Jörke, A. Seidel-Morgenstern, C. Hamel, Chem. Eng. J. 2015, 260, 513–523.
- 6
- 6aG. Kiedorf, D. M. Hoang, A. Müller, A. Jörke, J. Markert, H. Arellano-Garcia, A. Seidel-Morgenstern, C. Hamel, Chem. Eng. Sci. 2014, 115, 31–48;
- 6bA. Jörke, T. Gaide, A. Behr, A. Vorholt, A. Seidel-Morgenstern, C. Hamel, Chem. Eng. J. 2017, 313, 382–397.
- 7
- 7aJ. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012, 354, 17–57;
- 7bJ. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849–8869;
- 7cB. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688–6728;
- 7dR. Porta, M. Benaglia, A. Puglisi, Org. Process Res. Dev. 2016, 20, 2–25;
- 7eV. Sans, L. Cronin, Chem. Soc. Rev. 2016, 45, 2032–2043;
- 7fM. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796–11893;
- 7gF. Darvas, G. Dormán in Fundamentals of flow chemistry, Vol. 1 (Eds.: F. Darvas, G. Dormán, V. Hessel, S. V. Ley), De Gruyter, Berlin, 2021, pp. 1–50;
- 7h Fundamentals of flow chemistry, Vol. 2 (Eds.: F. Darvas, G. Dormán, V. Hessel, S. V. Ley), De Gruyter, Berlin, 2021.
10.1515/9783110693676 Google Scholar
- 8
- 8aJ.-i. Yoshida, in Flash Chemistry, Wiley, Hoboken, 2008, pp. 7–18;
10.1002/9780470723425.ch2 Google Scholar
- 8bJ.-i. Yoshida, A. Nagaki, T. Yamada, Chem. Eur. J. 2008, 14, 7450–7459;
- 8cP. J. Nieuwland, K. Koch, N. van Harskamp, R. Wehrens, J. C. M. van Hest, F. P. J. T. Rutjes, Chem. Asian J. 2010, 5, 799–805;
- 8dJ.-I. Yoshida, Chem. Rec. 2010, 10, 332–341;
- 8eJ.-i. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 2013, 49, 9896–9904.
- 9
- 9aR. Abdallah, V. Meille, J. Shaw, D. Wenn, C. de Bellefon, Chem. Commun. 2004, 372–373;
- 9bC. de Bellefon, T. Lamouille, N. Pestre, F. Bornette, H. Pennemann, F. Neumann, V. Hessel, Catal. Today 2005, 110, 179–187;
- 9cM. O'Brien, N. Taylor, A. Polyzos, I. R. Baxendale, S. V. Ley, Chem. Sci. 2011, 2, 1250–1257;
- 9dS. Balogh, G. Farkas, J. Madarász, Á. Szöllősy, J. Kovács, F. Darvas, L. Ürge, J. Bakos, Green Chem. 2012, 14, 1146–1151;
- 9eM. D. Johnson, S. A. May, J. R. Calvin, G. R. Lambertus, P. B. Kokitkar, C. R. Landis, B. R. Jones, M. L. Abrams, J. R. Stout, Org. Process Res. Dev. 2016, 20, 888–900;
- 9fF. Guan, N. Kapur, L. Sim, C. J. Taylor, J. Wen, X. Zhang, A. J. Blacker, React. Chem. Eng. 2020, 5, 1903–1908;
- 9gF. Guan, A. J. Blacker, B. Hall, N. Kapur, J. Wen, X. Zhang, J. Flow Chem. 2021, 11, 763–772.
- 10S. Chatterjee, M. Guidi, P. H. Seeberger, K. Gilmore, Nature 2020, 579, 379–384.
- 11R. Zhang, X. Yan, F. Guan, Y. Qian, J. Peng, J. Wang, B. Ma, S.-T. Bai, J. Wen, X. Zhang, J. Catal. 2022, 413, 388–397.
- 12E. Billig, A. G. Abatjoglou, D. R. Bryant, US Patent 4668651 (1987) and 4769498 (1988).
- 13A. Behr, D. Obst, C. Schulte, T. Schosser, J. Mol. Catal. A 2003, 206, 179–184.
- 14H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Noël, Chem. Soc. Rev. 2016, 45, 83–117.
- 15C. J. Taylor, M. Booth, J. A. Manson, M. J. Willis, G. Clemens, B. A. Taylor, T. W. Chamberlain, R. A. Bourne, Chem. Eng. J. 2021, 413, 127017.
- 16
- 16aG. I. Taylor, J. Fluid Mech. 1961, 10, 161–165;
- 16bM. Mei, F. Felis, G. Hébrard, N. Dietrich, K. Loubière, Theor. Found. Chem. Eng. 2020, 54, 25–47.
- 17P. Xie, K. Wang, G. Luo, Ind. Eng. Chem. Res. 2018, 57, 3898–3907.
- 18E. J. P.-F. U. J. Jáuregui-Haza, A. M. Wilhelm, H. Delmas, Lat. Am. Appl. Res. 2004, 34, 71–74.
- 19
- 19aJ. F. Biellmann, M. J. Jung, J. Am. Chem. Soc. 1968, 90, 1673–1674;
- 19bM. Tuner, J. v Jouanne, H. D. Brauer, H. Kelm, J. Mol. Catal. 1979, 5, 425–431;
- 19cT. C. Morrill, C. A. D′Souza, Organometallics 2003, 22, 1626–1629.
- 20
- 20aP. Roesle, L. Caporaso, M. Schnitte, V. Goldbach, L. Cavallo, S. Mecking, J. Am. Chem. Soc. 2014, 136, 16871–16881;
- 20bS. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169–1204.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.