Hydrophilicity-Based Engineering of the Active Pocket of D-Amino Acid Oxidase Leading to Highly Improved Specificity toward D-Glufosinate
Kai Yang
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorBin Huang
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorCharles Amanze
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorZhen Yan
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorGuanzhou Qiu
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorProf. Xueduan Liu
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorProf. Hongbo Zhou
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Weimin Zeng
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorKai Yang
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorBin Huang
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorCharles Amanze
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorZhen Yan
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorGuanzhou Qiu
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorProf. Xueduan Liu
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorProf. Hongbo Zhou
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Weimin Zeng
Central South University, School of Minerals Processing and Bioengineering, 932 South Lushan Road, Yuelu District, Changsha Hunan, 410083 P.R. China
Search for more papers by this authorAbstract
Due to its stringent stereospecificity, D-amino acid oxidase (DAAO) has made it very easy to synthesize L-amino acids. However, the low activity of the wild-type enzyme toward unnatural substrates, such as D-glufosinate (D-PPT), restricts its application. In this study, DAAO from Rhodotorula gracilis (RgDAAO) was directly evolved using a hydrophilicity-substitution saturation mutagenesis strategy, yielding a mutant with significantly increased catalytic activity against D-PPT. The mutant displays distinct catalytic properties toward hydrophilic substrates as compared to numerous WT-DAAOs. The analysis of homology modeling and molecular dynamic simulation suggest that the extended reaction pocket with greater hydrophilicity was the reason for the enhanced activity. The current study established an enzymatic synthetic route to L-PPT, an excellent herbicide, with high efficiency, and the proposed strategy provides a new viewpoint on enzyme engineering for the biosynthesis of unnatural amino acids.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212720-sup-0001-misc_information.pdf1,015.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Brunharo, H. K. Takano, C. A. Mallory-Smith, F. E. Dayan, B. D. Hanson, J. Agric. Food Chem. 2019, 67, 8431–8440.
- 2H. K. Takano, F. E. Dayan, Pest Manage. Sci. 2020, 76, 3911–3925.
- 3F. E. Dayan, S. O. Duke, Plant Physiol. 2014, 166, 1090–1105.
- 4
- 4aH. K. Takano, R. Beffa, C. Preston, P. Westra, F. E. Dayan, Planta 2019, 249, 1837–1849;
- 4bC. Zhou, X. Luo, N. Chen, L. Zhang, J. Gao, J. Agric. Food Chem. 2020, 68, 3344–3353;
- 4cB. G. Forde, P. J. Lea, J. Exp. Bot. 2007, 58, 2339–2358.
- 5
- 5aJ. M. Xu, H. T. Cao, M. Wang, B. J. Ma, L. Y. Wang, K. Zhang, F. Cheng, Y. P. Xue, Y. G. Zheng, Appl. Biochem. Biotechnol. 2021, 193, 2029–2042;
- 5bS. A. Nolte, B. G. Young, L. T. Tolley, D. J. Gibson, J. M. Young, D. A. Lightfoot, Crop Sci. 2017, 57, 350–364;
- 5cF. H. Krenchinski, V. J. S. Cesco, E. B. Castro, C. A. Carbonari, E. D. Velini, Planta Daninha 2019, 37, e019184453.
- 6
- 6aC. H. Cao, F. Cheng, Y. P. Xue, Y. G. Zheng, Enzyme Microb. Technol. 2020, 135, 109493;
- 6bL.Q. Jin, F. Peng, H. L. Liu, F. Cheng, D. X. Jia, J. M. Xu, Z. q Liu, Y. P. Xue, Y. G. Zheng, Process Biochem. 2019, 85, 60–67.
- 7
- 7aR. A. Sheldon, J. M. Woodley, Chem. Rev. 2018, 118, 801–838;
- 7bU. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185–194;
- 7cN. J. Turner, R. Kumar, Curr. Opin. Chem. Biol. 2018, 43, A1–A3.
- 8F. Cheng, J. M. Li, S. P. Zhou, Q. Liu, L. Q. Jin, Y. P. Xue, Y. G. Zheng, ChemBioChem 2021, 22, 345–348.
- 9
- 9aS. Umhau, L. Pollegioni, G. Molla, K. Diederichs, W. Welte, M. S. Pilone, S. Ghisla, Proc. Natl. Acad. Sci. USA 2000, 97, 12463–12468;
- 9bM. S. Pilone, Cell. Mol. Life Sci. 2000, 57, 1732–1747;
- 9cD. J. Kiss, G. G. Ferenczy, Org. Biomol. Chem. 2019, 17, 7973–7984;
- 9dG. L. Marcone, E. Binda, E. Rosini, M. Abbondi, L. Pollegioni, Front. Microbiol. 2019, 10, 2786;
- 9eL. Pollegioni, L. Piubelli, S. Sacchi, M. S. Pilone, G. Molla, Cell. Mol. Life Sci. 2007, 64, 1373–1394.
- 10
- 10aJ. C. Campillo-Brocal, P. Lucas Elio, A. Sanchez Amat, Mar. Drugs 2015, 13, 7403–7418;
- 10bL. Pollegioni, G. Molla, S. Sacchi, E. Rosini, R. Verga, M. S. Pilone, Appl. Microbiol. Biotechnol. 2008, 78, 1–16.
- 11
- 11aS. Takahashi, K. Abe, Y. Kera, Bioengineered 2015, 6, 237–241;
- 11bE. Rosini, L. Caldinelli, L. Piubelli, Front. Mol. Biosci. 2017, 4, 102.
- 12
- 12aG. Molla, S. Sacchi, M. Bernasconi, M. S. Pilone, K. Fukui, L. Polegioni, FEBS Lett. 2006, 580, 2358–2364;
- 12bJ. J. A. J. Bastings, H. M. van Eijk, S. W. Olde Damink, S. S. Rensen, Nutrients 2019, 11, 2205.
- 13
- 13aL. Pollegioni, A. Falbo, M. S. Pilone, Biochim. Biophys. Acta 1992, 1120, 11–16;
- 13bM. Waldeck-Weiermair, S. Yadav, F. Spyropoulos, C. Kruger, A. K. Pandey, T. Michel, Free Radical Biol. Med. 2021, 177, 360–369;
- 13cY. Shimekake, T. Furuichi, K. Abe, Y. Kera, S. Takahashi, Sci. Rep. 2019, 9, 11948.
- 14L. Pollegioni, G. Molla, Trends Biotechnol. 2011, 29, 276–283.
- 15
- 15aT. Tian, M. Liu, L. Chen, F. Zhang, X. Yao, H. Zhao, X. Li, Biosens. Bioelectron. 2020, 151, 111971;
- 15bS. Sacchi, S. Lorenzi, G. Molla, M. S. Pilone, C. Rossetti, L. Pollegioni, J. Biol. Chem. 2002, 277, 27510–27516.
- 16
- 16aX. Yin, J. Wu, L. Yang, Appl. Microbiol. Biotechnol. 2018, 102, 4425–4433;
- 16bD. X. Jia, Z. J. Liu, H. P. Xu, J. L. Li, J. J. Li, L. Q. Jin, F. Cheng, Z. Q. Liu, Y. P. Xue, Y. G. Zheng, J. Biotechnol. 2019, 302, 10–17;
- 16cC. H. Cao, H. Gong, Y. Dong, J. M. Li, F. Cheng, Y. P. Xue, Y. G. Zheng, J. Biotechnol. 2021, 325, 372–379.
- 17J. Xu, K. Zhang, H. Cao, H. Li, F. Cheng, C. Cao, Y.-P. Xue, Y.-G. Zheng, Biocatal. Biotransform. 2021, 39, 190–197.
- 18
- 18aY. Wang, P. Xue, M. Cao, T. Yu, S. T. Lane, H. Zhao, Chem. Rev. 2021, 121, 12384–12444;
- 18bC. Zeymer, D. Hilvert, Annu. Rev. Biochem. 2018, 87, 131–157;
- 18cG. Qu, R. Lonsdale, P. Yao, G. Li, B. Liu, M. T. Reetz, Z. Sun, ChemBioChem 2018, 19, 239–246;
- 18dC. Schmidt-Dannert, F. H. Arnold, Trends Biotechnol. 1999, 17, 135–136;
- 18eK. Chen, F. H. Arnold, Nat. Catal. 2020, 3, 203–213.
- 19
- 19aW. Zheng, H. Yu, S. Fang, K. Chen, Z. Wang, X. Cheng, G. Xu, L. Yang, J. Wu, ACS Catal. 2021, 11, 3198–3205;
- 19bZ. Sun, R. Lonsdale, L. Wu, G. Li, A. Li, J. Wang, J. Zhou, M. T. Reetz, ACS Catal. 2016, 6, 1590–1597.
- 20
- 20aZ. Sun, R. Lonsdale, G. Li, M. T. Reetz, ChemBioChem 2016, 17, 1865–1872;
- 20bZ. Sun, R. Lonsdale, A. Ilie, G. Li, J. Zhou, M. T. Reetz, ACS Catal. 2016, 6, 1598–1605;
- 20cG. Li, H. Zhang, Z. Sun, X. Liu, M. T. Reetz, ACS Catal. 2016, 6, 3679–3687;
- 20dM. T. Reetz, Adv. Synth. Catal. 2022, 364, 3326–3335.
- 21
- 21aQ. Meng, C. Ramirez-Palacios, N. Capra, M. E. Hooghwinkel, S. Thallmair, H. J. Rozeboom, A. W. H. Thunnissen, H. J. Wijma, S. J. Marrink, D. B. Janssen, ACS Catal. 2021, 11, 10733–10747;
- 21bE. J. Ma, E. Siirola, C. Moore, A. Kummer, M. Stoeckli, M. Faller, C. Bouquet, F. Eggimann, M. Ligibel, D. Huynh, G. Cutler, L. Siegrist, R. A. Lewis, A.-C. Acker, E. Freund, E. Koch, M. Vogel, H. Schlingensiepen, E. J. Oakeley, R. Snajdrova, ACS Catal. 2021, 11, 12433–12445;
- 21cW. Song, X. Xu, C. Gao, Y. Zhang, J. Wu, J. Liu, X. Chen, Q. Luo, L. Liu, ACS Catal. 2020, 10, 9994–10004;
- 21dG.-C. Xu, Y. Wang, M.-H. Tang, J.-Y. Zhou, J. Zhao, R.-Z. Han, Y. Ni, ACS Catal. 2018, 8, 8336–8345.
- 22Z. Sun, R. Lonsdale, X. D. Kong, J. H. Xu, J. Zhou, M. T. Reetz, Angew. Chem. Int. Ed. 2015, 54, 12410–12415; Angew. Chem. 2015, 127, 12587–12592.
- 23L. Wang, S. Diao, Y. Sun, S. Jiang, Y. Liu, H. Wang, D. Wei, Catal. Sci. Technol. 2021, 11, 4208–4215.
- 24S. Takahashi, K. Osugi, Y. Shimekake, A. Shinbo, K. Abe, Y. Kera, Appl. Microbiol. Biotechnol. 2019, 103, 4053–4064.
- 25
- 25aV. I. Tishkov, S. V. Khoronenkova, Biochemistry 2005, 70, 40–54;
- 25bM. Gabler, M. Hensel, L. Fischer, Enzyme Microb. Technol. 2000, 27, 605–611.
- 26B. Geueke, A. Weckbecker, W. Hummel, Appl. Microbiol. Biotechnol. 2007, 74, 1240–1247.
- 27G. O. Ambrose, O. J. Afees, A. S. Oluwaseun, C. Terkuma, M. Iorwuese, A. A. Kayode, B. B. Ajibola, A. W. Oshireku, A. D. Todimu, F. R. A. Rebecca, A. Precious, J. Appl. Bioinf. Comput. Biol. 2018, 07, 1000157.
10.4172/2329-9533.1000157 Google Scholar
- 28A. Tilocca, A. Gamba, M. A. Vanoni, E. Fois, Biochemistry 2002, 41, 14111–14121.
- 29S. Roda, L. Fernandez Lopez, R. Cañadas, G. Santiago, M. Ferrer, V. Guallar, ACS Catal. 2021, 11, 3590–3601.
- 30
- 30aX.-M. Gong, Z. Qin, F. L. Li, B. B. Zeng, G. W. Zheng, J. H. Xu, ACS Catal. 2019, 9, 147–153;
- 30bZ. Wen, Z. M. Zhang, L. Zhong, J. Fan, M. Li, Y. Ma, Y. Zhou, W. Zhang, B. Guo, B. Chen, J. B. Wang, ACS Catal. 2021, 11, 14781–14790;
- 30cD.-H. Wang, Q. Chen, S. N. Yin, X. W. Ding, Y. C. Zheng, Z. Zhang, Y. H. Zhang, F. F. Chen, J. H. Xu, G. W. Zheng, ACS Catal. 2021, 11, 14274–14283.
- 31
- 31aK. Yasukawa, S. Nakano, Y. Asano, Angew. Chem. Int. Ed. 2014, 53, 4428–4431; Angew. Chem. 2014, 126, 4517–4520;
- 31bS. Nakano, K. Yasukawa, T. Tokiwa, T. Ishikawa, E. Ishitsubo, N. Matsuo, S. Ito, H. Tokiwa, Y. Asano, J. Phys. Chem. B 2016, 120, 10736–10743.
- 32F. Cheng, H. Li, K. Zhang, Q. H. Li, D. Xie, Y. P. Xue, Y. G. Zheng, J. Biotechnol. 2020, 312, 35–43.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.