C(sp3)−H Hydroxylation in Diiron β-Hydroxylase CmlA Transpires by Amine-Assisted O2 Activation Avoiding FeIV2O2 Species
Dr. Jiarui Lu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Department of Chemistry, Renmin University of China, Beijing, 100872 China
School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorProf. Dr. Wenzhen Lai
Department of Chemistry, Renmin University of China, Beijing, 100872 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hui Chen
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Jiarui Lu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Department of Chemistry, Renmin University of China, Beijing, 100872 China
School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorProf. Dr. Wenzhen Lai
Department of Chemistry, Renmin University of China, Beijing, 100872 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hui Chen
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorAbstract
Through QM/MM modeling, we discovered that C(sp3)−H β-hydroxylation in the diiron hydroxylase CmlA transpires by traceless amine-assisted O2 activation. Different from the canonical diiron hydroxylase sMMO, this aliphatic-amine-assisted O2 activation avoids generating the high-valent diferryl FeIV2O2 species, but alternatively renders a diferric FeIII2O species as the reactive oxidant. From this unprecedented O2 activation mode, the derived C(sp3)−H hydroxylation mechanism in CmlA also differs drastically from the toluene aromatic C(sp2)−H hydroxylation in the diiron hydroxylase T4MO. This substrate-modulated O2 activation in CmlA has rich mechanistic implications for other diiron hydroxylases with an amine group adjacent to the C−H bond under hydroxylation in substrates, such as hDOHH. Furthermore, the adapted coordination environment of the diiron cofactor upon O2 binding in CmlA opens up more structural and mechanistic possibilities for O2 activation in non-heme diiron enzymes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202211843-sup-0001-misc_information.pdf576.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932;
- 1bA. Greule, J. E. Stok, J. J. De Voss, M. J. Cryle, Nat. Prod. Rep. 2018, 35, 757.
- 2
- 2aP. F. Fitzpatrick, Annu. Rev. Biochem. 1999, 68, 355;
- 2bS. Markolovic, S. E. Wilkins, C. J. Schofield, J. Biol. Chem. 2015, 290, 20712;
- 2cM.-H. Baik, M. Newcomb, R. A. Friesner, S. J. Lippard, Chem. Rev. 2003, 103, 2385;
- 2dA. J. Komor, A. J. Jasniewski, L. Que Jr, J. D. Lipscomb, Nat. Prod. Rep. 2018, 35, 646.
- 3M. Szaleniec, A. M. Wojtkiewicz, R. Bernhardt, T. Borowski, M. Donova, Appl. Microbiol. Biotechnol. 2018, 102, 8153.
- 4
- 4aT. L. Poulos, Chem. Rev. 2014, 114, 3919;
- 4bX. Huang, J. T. Groves, Chem. Rev. 2018, 118, 2491.
- 5
- 5aM. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr, Chem. Rev. 2004, 104, 939;
- 5bE. I. Solomon, S. Goudarzi, K. D. Sutherlin, Biochemistry 2016, 55, 6363.
- 6
- 6aC. E. Tinberg, S. J. Lippard, Acc. Chem. Res. 2011, 44, 280;
- 6bA. J. Jasniewski, L. Que Jr, Chem. Rev. 2018, 118, 2554;
- 6cA. Trehoux, J.-P. Mahy, F. Avenier, Coord. Chem. Rev. 2016, 322, 142.
- 7
- 7aS. Sirajuddin, A. C. Rosenzweig, Biochemistry 2015, 54, 2283;
- 7bM. O. Ross, A. C. Rosenzweig, J. Biol. Inorg. Chem. 2017, 22, 307.
- 8
- 8aV. C.-C. Wang, S. Maji, P. P.-Y. Chen, H. K. Lee, S. S.-F. Yu, S. I. Chan, Chem. Rev. 2017, 117, 8574;
- 8bR. Banerjee, J. C. Jones, J. D. Lipscomb, Annu. Rev. Biochem. 2019, 88, 409.
- 9
- 9aR. Banerjee, Y. Proshlyakov, J. D. Lipscomb, D. A. Proshlyakov, Nature 2015, 518, 431;
- 9bR. G. Castillo, R. Banerjee, C. J. Allpress, G. T. Rohde, E. Bill, L. Que Jr, J. D. Lipscomb, S. DeBeer, J. Am. Chem. Soc. 2017, 139, 18024;
- 9cC. E. Schulz, R. G. Castillo, D. A. Pantazis, S. DeBeer, F. Neese, J. Am. Chem. Soc. 2021, 143, 6560.
- 10J. F. Acheson, L. J. Bailey, T. C. Brunold, B. G. Fox, Nature 2017, 544, 191.
- 11
- 11aT. M. Makris, M. Chakrabarti, E. Münck, J. D. Lipscomb, Proc. Natl. Acad. Sci. USA 2010, 107, 15391;
- 11bV. V. Vu, T. M. Makris, J. D. Lipscomb, L. Que Jr, J. Am. Chem. Soc. 2011, 133, 6938;
- 11cT. M. Makris, C. J. Knoot, C. M. Wilmot, J. D. Lipscomb, Biochemistry 2013, 52, 6662;
- 11dA. J. Jasniewski, C. J. Knoot, J. D. Lipscomb, L. Que Jr, Biochemistry 2016, 55, 5818.
- 12D. A. Whittington, S. J. Lippard, J. Am. Chem. Soc. 2001, 123, 827.
- 13
- 13aV. V. Vu, J. P. Emerson, M. Martinho, Y. S. Kim, E. Münck, M. H. Park, L. Que Jr, Proc. Natl. Acad. Sci. USA 2009, 106, 14814;
- 13bZ. Han, N. Sakai, L. H. Böttger, S. Klinke, J. Hauber, A. X. Trautwein, R. Hilgenfeld, Structure 2015, 23, 882;
- 13cA. J. Jasniewski, L. M. Engstrom, V. V. Vu, M. H. Park, L. Que Jr, J. Biol. Inorg. Chem. 2016, 21, 605;
- 13dJ. Wang, Y. Ma, X. Wang, Y. Zhang, H. Tan, X. Li, G. Chen, Phys. Chem. Chem. Phys. 2020, 22, 22736.
- 14C. Wang, H. Chen, J. Am. Chem. Soc. 2017, 139, 13038.
- 15C. Wang, C. Zhao, L. Hu, H. Chen, J. Phys. Chem. Lett. 2016, 7, 4427.
- 16C. Zhao, H. Chen, ACS Catal. 2017, 7, 3521.
- 17S. D. McCann, J.-P. Lumb, B. A. Arndtsen, S. S. Stahl, ACS Cent. Sci. 2017, 3, 314.
- 18The adopted QM/MM method employs DFT (B3LYP) and CHARMM force field for QM and MM regions, respectively. The QM region includes key residues of both the first and the second coordination sphere of the diiron site. See the Supporting Information for computational details.
- 19In the crystal structure of diferrous state of CmlA, Fe2 site has two water molecules coordinated, which implies the high probability of its coordination with O2 after leaving of the weakly bound waters.
- 20The N−O−O fragment in the intermediate S-4 coordinates with Fe2 site in an end-on mode, which means that the end-on oxyl species S-2 could share a similar O−O bond cleavage pathway as S-1.
- 21J. Münch, P. Püllmann, W. Zhang, M. J. Weissenborn, ACS Catal. 2021, 11, 9168.
- 22
- 22aA. B. Jacobs, R. Banerjee, D. E. Deweese, A. Braun, J. T. Babicz Jr, L. B. Gee, K. D. Sutherlin, L. H. Böttger, Y. Yoda, M. Saito, S. Kitao, Y. Kobayashi, M. Seto, K. Tamasaku, J. D. Lipscomb, K. Park, E. I. Solomon, J. Am. Chem. Soc. 2021, 143, 16007;
- 22bB. F. Gherman, S. J. Lippard, R. A. Friesner, J. Am. Chem. Soc. 2005, 127, 1025;
- 22cD. G. Musaev, H. Basch, K. Morokuma, J. Am. Chem. Soc. 2002, 124, 4135;
- 22dM.-H. Baik, B. F. Gherman, R. A. Friesner, S. J. Lippard, J. Am. Chem. Soc. 2002, 124, 14608.
- 23
- 23aH. Lu, E. Chanco, H. Zhao, Tetrahedron 2012, 68, 7651;
- 23bT. M. Makris, V. V. Vu, K. K. Meier, A. J. Komor, B. S. Rivard, E. Münck, L. Que Jr, J. D. Lipscomb, J. Am. Chem. Soc. 2015, 137, 1608;
- 23cA. J. Komor, B. S. Rivard, R. Fan, Y. Guo, L. Que Jr, J. D. Lipscomb, J. Am. Chem. Soc. 2016, 138, 7411;
- 23dA. J. Jasniewski, A. J. Komor, J. D. Lipscomb, L. Que Jr, J. Am. Chem. Soc. 2017, 139, 10472.
- 24
- 24aR. Winkler, C. Hertweck, Angew. Chem. Int. Ed. 2005, 44, 4083; Angew. Chem. 2005, 117, 4152;
- 24bR. Winkler, M. E. A. Richter, U. Knüpfer, D. Merten, C. Hertweck, Angew. Chem. Int. Ed. 2006, 45, 8016; Angew. Chem. 2006, 118, 8184;
- 24cM. Simurdiak, J. Lee, H. Zhao, ChemBioChem 2006, 7, 1169;
- 24dV. K. Korboukh, N. Li, E. W. Barr, J. M. Bollinger Jr, C. Krebs, J. Am. Chem. Soc. 2009, 131, 13608;
- 24eN. Li, V. K. Korboukh, C. Krebs, J. M. Bollinger Jr, Proc. Natl. Acad. Sci. USA 2010, 107, 15722;
- 24fA. Fries, R. Winkler, C. Hertweck, Chem. Commun. 2010, 46, 7760;
- 24gA. Fries, T. Bretschneider, R. Winkler, C. Hertweck, ChemBioChem 2011, 12, 1832;
- 24hE. Platter, M. Lawson, C. Marsh, M. H. Sazinsky, Arch. Biochem. Biophys. 2011, 508, 39;
- 24iK. Park, N. Li, Y. Kwak, M. Srnec, C. B. Bell, L. V. Liu, S. D. Wong, Y. Yoda, S. Kitao, M. Seto, M. Hu, J. Zhao, C. Krebs, J. M. Bollinger Jr, E. I. Solomon, J. Am. Chem. Soc. 2017, 139, 7062.
- 25
- 25aO. W. Griffith, D. J. Stuehr, Annu. Rev. Physiol. 1995, 57, 707;
- 25bM. A. Marletta, A. R. Hurshman, K. M. Rusche, Curr. Opin. Chem. Biol. 1998, 2, 656;
- 25cG. M. Rosen, P. Tsai, S. Pou, Chem. Rev. 2002, 102, 1191;
- 25dB. R. Crane, J. Sudhamsu, B. A. Patel, Annu. Rev. Biochem. 2010, 79, 445;
- 25eC. Feng, Coord. Chem. Rev. 2012, 256, 393.
- 26
- 26aP. R. Gardner, A. M. Gardner, L. A. Martin, A. L. Salzman, Proc. Natl. Acad. Sci. USA 1998, 95, 10378;
- 26bM. P. Schopfer, B. Mondal, D.-H. Lee, A. A. N. Sarjeant, K. D. Karlin, J. Am. Chem. Soc. 2009, 131, 11304;
- 26cE. T. Yukl, S. de Vries, P. Moënne-Loccoz, J. Am. Chem. Soc. 2009, 131, 7234–7235;
- 26dS. K. Sharma, A. W. Schaefer, H. Lim, H. Matsumura, P. Moënne-Loccoz, B. Hedman, K. O. Hodgson, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2017, 139, 17421.
- 27
- 27aW. Dall′Acqua, P. Carter, Protein Sci. 2000, 9, 1–9;
- 27bP.-O. Syrén, F. Le Joubioux, Y. Ben Henda, T. Maugard, K. Hult, M. Graber, ChemCatChem 2013, 5, 1842.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.