19F Barcoding Enables Multiplex Detection of Biomarkers Associated with Organ Injury and Cancer
Xiangjie Luo
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBilun Kang
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Xiaoqin Chi
Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Research Institute of Digestive Disease, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004 China
Search for more papers by this authorHui Xiong
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDongxia Chen
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYifan Fan
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLingxuan Li
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLimin Chen
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Ao Li
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Jinhao Gao
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Hongyu Lin
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorXiangjie Luo
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBilun Kang
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Xiaoqin Chi
Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Research Institute of Digestive Disease, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004 China
Search for more papers by this authorHui Xiong
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDongxia Chen
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYifan Fan
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLingxuan Li
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLimin Chen
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Ao Li
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Jinhao Gao
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Hongyu Lin
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAbstract
Simultaneous detection of multiple biomarkers in complex environments is critical for the in-depth exploration of different biological processes, which is challenging for many current analytical methods due to various limitations. Herein, we report a strategy of 19F barcoding which takes the advantages of 19F's high magnetic resonance (MR) sensitivity, prompt signal response to environmental changes, negligible biological background, quantitative signal output, and multiplex capacity. A set of 19F-barcoded sensors responding to different biomarkers involved in organ injury and cancer are designed, synthesized, and characterized. With these sensors, we accomplish concurrent assessment of different biomarkers in the samples collected from the mice with drug-induced liver/kidney injury or tumor, illustrating the feasibility of this approach for multiplexed detection of different biomarkers in complex environments during various biological processes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202211189-sup-0001-misc_information.pdf7.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. G. Dias, A. King, F. de Moliner, M. Vendrell, E. N. da Silva Junior, Chem. Soc. Rev. 2018, 47, 12–27.
- 2B. Freidlin, E. L. Korn, J. Natl. Cancer Inst. 2022, 114, 187–190.
- 3O. Hansson, Nat. Med. 2021, 27, 954–963.
- 4A. Antoranz, T. Sakellaropoulos, J. Saez-Rodriguez, L. G. Alexopoulos, Drug Discov. Today 2017, 22, 1209–1215.
- 5D. Cheng, W. Xu, X. Gong, L. Yuan, X. B. Zhang, Acc. Chem. Res. 2021, 54, 403–415.
- 6A. Root, P. Allen, P. Tempst, K. Yu, Cancers 2018, 10, 67.
- 7X. Luo, X. Gong, L. Su, H. Lin, Z. Yang, X. Yan, J. Gao, Angew. Chem. Int. Ed. 2021, 60, 1403–1410; Angew. Chem. 2021, 133, 1423–1430.
- 8G. Gao, Y. W. Jiang, W. Zhan, X. Liu, R. Tang, X. Sun, Y. Deng, L. Xu, G. Liang, J. Am. Chem. Soc. 2022, 144, 11897–11910.
- 9Y. Liu, L. Teng, B. Yin, H. Meng, X. Yin, S. Huan, G. Song, X. B. Zhang, Chem. Rev. 2022, 122, 6850–6918.
- 10P. Spanogiannopoulos, E. N. Bess, R. N. Carmody, P. J. Turnbaugh, Nat. Rev. Microbiol. 2016, 14, 273–287.
- 11J. Tan, K. Yin, Z. Ouyang, R. Wang, H. Pan, Z. Wang, C. Zhao, W. Guo, X. Gu, Anal. Chem. 2021, 93, 16158–16165.
- 12A. Noto, Y. Ogawa, S. Mori, M. Yoshioka, T. Kitakaze, T. Hori, M. Nakamura, T. Miyake, Clin. Chem. 1983, 29, 1713–1716.
- 13M. W. Duncan, D. Nedelkov, R. Walsh, S. J. Hattan, Clin. Chem. 2016, 62, 134–143.
- 14Y. Liu, L. Teng, C. Xu, H. W. Liu, S. Xu, H. Guo, L. Yuan, X. B. Zhang, Chem. Sci. 2019, 10, 10931–10936.
- 15C. Dubiella, H. Cui, M. Groll, Angew. Chem. Int. Ed. 2016, 55, 13330–13334; Angew. Chem. 2016, 128, 13524–13528.
- 16K. Yamada, F. Mito, Y. Matsuoka, S. Ide, K. Shikimachi, A. Fujiki, D. Kusakabe, Y. Ishida, M. Enoki, A. Tada, M. Ariyoshi, T. Yamasaki, M. Yamato, Nat. Chem. Biol. 2016, 12, 608–613.
- 17H. Lin, X. Tang, A. Li, J. Gao, Adv. Mater. 2021, 33, 2005657.
- 18X. Zhu, X. Tang, H. Lin, S. Shi, H. Xiong, Q. Zhou, A. Li, Q. Wang, X. Chen, J. Gao, Chem 2020, 6, 1134–1148.
- 19K. Akazawa, F. Sugihara, T. Nakamura, H. Matsushita, H. Mukai, R. Akimoto, M. Minoshima, S. Mizukami, K. Kikuchi, Angew. Chem. Int. Ed. 2018, 57, 16742–16747; Angew. Chem. 2018, 130, 16984–16989.
- 20T. Wu, A. Li, K. Chen, X. Peng, J. Zhang, M. Jiang, S. Chen, X. Zheng, X. Zhou, Z. X. Jiang, Chem. Commun. 2021, 57, 7743–7757.
- 21M. Yu, B. S. Bouley, D. Xie, J. S. Enriquez, E. L. Que, J. Am. Chem. Soc. 2018, 140, 10546–10552.
- 22E. Goren, L. Avram, A. Bar-Shir, Nat. Commun. 2021, 12, 3072.
- 23C. Wang, S. R. Adams, E. T. Ahrens, Acc. Chem. Res. 2021, 54, 3060–3070.
- 24H. Chen, S. Viel, F. Ziarelli, L. Peng, Chem. Soc. Rev. 2013, 42, 7971–7982.
- 25U. Flögel, E. Ahrens, Fluorine Magnetic Resonance Imaging, Pan Stanford Publishing, Redwood City, 2017, pp. 29–58, ISBN 978-981-4745-31-4.
- 26U. Flögel, S. Temme, C. Jacoby, T. Oerther, P. Keul, V. Flocke, X. Wang, F. Bonner, F. Nienhaus, K. Peter, J. Schrader, M. Grandoch, M. Kelm, B. Levkau, Nat. Commun. 2021, 12, 5847.
- 27J. Kretschmer, T. David, M. Dracinsky, O. Socha, D. Jirak, M. Vit, R. Jurok, M. Kuchar, I. Cisarova, M. Polasek, Nat. Commun. 2022, 13, 3179.
- 28H. Allouche-Arnon, O. Khersonsky, N. D. Tirukoti, Y. Peleg, O. Dym, S. Albeck, A. Brandis, T. Mehlman, L. Avram, T. Harris, N. N. Yadav, S. J. Fleishman, A. Bar-Shir, Nat. Biotechnol. 2022, 40, 1143–1149.
- 29T. Nakamura, H. Matsushita, F. Sugihara, Y. Yoshioka, S. Mizukami, K. Kikuchi, Angew. Chem. Int. Ed. 2015, 54, 1007–1010; Angew. Chem. 2015, 127, 1021–1024.
- 30Z. Xu, C. Liu, S. Zhao, S. Chen, Y. Zhao, Chem. Rev. 2019, 119, 195–230.
- 31B. Linclau, A. Arda, N. C. Reichardt, M. Sollogoub, L. Unione, S. P. Vincent, J. Jimenez-Barbero, Chem. Soc. Rev. 2020, 49, 3863–3888.
- 32C. Zhang, K. Yan, C. Fu, H. Peng, C. J. Hawker, A. K. Whittaker, Chem. Rev. 2022, 122, 167–208.
- 33H. Li, Q. Yao, W. Sun, K. Shao, Y. Lu, J. Chung, D. Kim, J. Fan, S. Long, J. Du, Y. Li, J. Wang, J. Yoon, X. Peng, J. Am. Chem. Soc. 2020, 142, 6381–6389.
- 34P. Cheng, Q. Miao, J. Huang, J. Li, K. Pu, Anal. Chem. 2020, 92, 6166–6172.
- 35Y. Huang, Y. Qi, C. Zhan, F. Zeng, S. Wu, Anal. Chem. 2019, 91, 8085–8092.
- 36J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133–1143.
- 37J. Ou-Yang, Y. F. Li, P. Wu, W. L. Jiang, H. W. Liu, C. Y. Li, ACS Sens. 2018, 3, 1354–1361.
- 38F. Yan, X. Tian, Z. Luan, L. Feng, X. Ma, T. D. James, Chem. Commun. 2019, 55, 1955–1958.
- 39L. Li, C. W. Zhang, J. Ge, L. Qian, B. H. Chai, Q. Zhu, J. S. Lee, K. L. Lim, S. Q. Yao, Angew. Chem. Int. Ed. 2015, 54, 10821–10825; Angew. Chem. 2015, 127, 10971–10975.
- 40A. Oláh, R. Price, L. Csáthy, E. Országh, E. Oláh, J. Varga Clin, Chem. Lab. Med. 2004, 42, 305–306.
- 41K. Yamaguchi, R. Ueki, H. Nonaka, F. Sugihara, T. Matsuda, S. Sando, J. Am. Chem. Soc. 2011, 133, 14208–14211.
- 42J. X. Yu, V. D. Kodibagkar, L. Liu, R. P. Mason, NMR Biomed. 2008, 21, 704–712.
- 43W. Cui, P. Otten, Y. Li, K. S. Koeneman, J. Yu, R. P. Mason, Magn. Reson. Med. 2004, 51, 616–620.
- 44P. Zhang, X. F. Jiang, X. Nie, Y. Huang, F. Zeng, X. Xia, S. Wu, Biomaterials 2016, 80, 46–56.
- 45J. Ma, H. Zhang, F. Peng, X. Yang, Z. L. Li, L. Sun, H. Jiang, Anal. Chim. Acta 2020, 1101, 129–134.
- 46S. J. Sohn, S. Y. Kim, H. S. Kim, Y. J. Chun, S. Y. Han, S. H. Kim, A. Moon, Toxicol. Lett. 2013, 217, 235–242.
- 47C. Ju, N. Hamaue, T. Machida, Y. Liu, K. Iizuka, Y. Wang, M. Minami, M. Hirafuji, Eur. J. Pharmacol. 2008, 589, 281–287.
- 48R. J. Andrade, N. Chalasani, E. S. Bjornsson, A. Suzuki, G. A. Kullak-Ublick, P. B. Watkins, H. Devarbhavi, M. Merz, M. I. Lucena, N. Kaplowitz, G. P. Aithal, Nat. Rev. Dis. Primers. 2019, 5, 58.
- 49D. Choudhury, Z. Ahmed, Nat. Clin. Pract. Nephrol. 2006, 2, 80–91.
- 50R. Malhotra, E. D. Siew, Clin. J. Am. Soc. Nephrol. 2017, 12, 149–173.
- 51R. G. Price, Clin. Nephrol. 1992, 38, 14–19.
- 52P. H. Whiting, P. A. J. Brown, Renal Fail. 1996, 18, 899–909.
- 53X. He, Y. Xu, W. Shi, H. Ma, Anal. Chem. 2017, 89, 3217–3221.
- 54R. Obara, M. Kamiya, Y. Tanaka, A. Abe, R. Kojima, T. Kawaguchi, M. Sugawara, A. Takahashi, T. Noda, Y. Urano, Angew. Chem. Int. Ed. 2021, 60, 2125–2129; Angew. Chem. 2021, 133, 2153–2157.
- 55F. Curnis, A. Sacchi, L. Borgna, F. Magni, A. Gasparri, A. Corti, Nat. Biotechnol. 2000, 18, 1185–1190.
- 56F. Wang, Y. Zhu, L. Zhou, L. Pan, Z. Cui, Q. Fei, S. Luo, D. Pan, Q. Huang, R. Wang, C. Zhao, H. Tian, C. Fan, Angew. Chem. Int. Ed. 2015, 54, 7349–7353; Angew. Chem. 2015, 127, 7457–7461.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.