Design of Frustrated Lewis Pair Catalysts for Direct Hydrogenation of CO2
Dr. Shubhajit Das
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Roland C. Turnell-Ritson
Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Paul J. Dyson
Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Clémence Corminboeuf
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Shubhajit Das
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Roland C. Turnell-Ritson
Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Paul J. Dyson
Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Clémence Corminboeuf
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorAbstract
Despite recent progress in the chemistry of frustrated Lewis pairs (FLPs), direct FLP-catalyzed hydrogenation of CO2 remains elusive. From a near-infinite array of plausible Lewis pairs, it is challenging to identify individual combinations that are appropriate for catalyzing this reaction. To this end, we propose a mapping of the chemical composition of FLPs to their activity towards direct catalytic hydrogenation of CO2 into formate. The maps, built upon linear scaling relationships, pinpoint specific FLP combinations with the proper complementary acidity and basicity to optimally balance the energetics of the catalytic cycle. One such combination was experimentally validated to achieve hitherto unreported catalytic turnover for this transformation.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in zenodo at https://doi.org/10.5281/zenodo.6994552.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202208987-sup-0001-misc_information.pdf4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev. 2015, 115, 12936.
- 2A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev. 2017, 117, 9804.
- 3J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296; Angew. Chem. 2016, 128, 7416.
- 4Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.
- 5S.-T. Bai, G. De Smet, Y. Liao, R. Sun, C. Zhou, M. Beller, B. U. Maes, B. F. Sels, Chem. Soc. Rev. 2021, 50, 4259.
- 6M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, et al., Science 2012, 336, 893.
- 7G. Erker, D. W. Stephan, Frustrated Lewis Pairs, Springer, Berlin, 2013.
10.1007/978-3-642-37759-4 Google Scholar
- 8D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46; Angew. Chem. 2010, 122, 50.
- 9D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400; Angew. Chem. 2015, 127, 6498.
- 10G. Erker, D. W. Stephan, Frustrated Lewis Pairs Ii: Expanding the Scope, Springer, Berlin, 2013.
10.1007/978-3-642-37759-4 Google Scholar
- 11D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018.
- 12D. W. Stephan, Science 2016, 354.
- 13D. W. Stephan, J. Am. Chem. Soc. 2021, 143, 20002.
- 14G. C. Welch, J. D. Masuda, D. W. Stephan, Inorg. Chem. 2006, 45, 478.
- 15G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124.
- 16G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei, D. W. Stephan, Dalton Trans. 2007, 3407.
- 17M.-A. Courtemanche, M.-A. Légaré, L. Maron, F.-G. Fontaine, J. Am. Chem. Soc. 2013, 135, 9326.
- 18M.-A. Courtemanche, A. P. Pulis, É. Rochette, M.-A. Légaré, D. W. Stephan, F.-G. Fontaine, Chem. Commun. 2015, 51, 9797.
- 19A. Berkefeld, W. E. Piers, M. Parvez, J. Am. Chem. Soc. 2010, 132, 10660.
- 20G. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796.
- 21R. Dobrovetsky, D. W. Stephan, Angew. Chem. Int. Ed. 2013, 52, 2516; Angew. Chem. 2013, 125, 2576.
- 22A. E. Ashley, A. L. Thompson, D. O'Hare, Angew. Chem. Int. Ed. 2009, 48, 9839; Angew. Chem. 2009, 121, 10023.
- 23T. Wang, D. W. Stephan, Chem. Eur. J. 2014, 20, 3036.
- 24T. Wang, D. W. Stephan, Chem. Commun. 2014, 50, 7007.
- 25T. Wang, M. Xu, A. R. Jupp, Z.-W. Qu, S. Grimme, D. W. Stephan, Angew. Chem. Int. Ed. 2021, 60, 25771; Angew. Chem. 2021, 133, 25975.
- 26T. Zhao, X. Hu, Y. Wu, Z. Zhang, Angew. Chem. Int. Ed. 2019, 58, 722; Angew. Chem. 2019, 131, 732.
- 27M. Wen, F. Huang, G. Lu, Z.-X. Wang, Inorg. Chem. 2013, 52, 12098.
- 28L. Liu, N. Vankova, T. Heine, Phys. Chem. Chem. Phys. 2016, 18, 3567.
- 29S. D. Tran, T. A. Tronic, W. Kaminsky, D. M. Heinekey, J. M. Mayer, Inorg. Chim. Acta 2011, 369, 126.
- 30S. Das, R. Laplaza, J. T. Blaskovits, C. Corminboeuf, Angew. Chem. Int. Ed. 2022, 61, e202202727; Angew. Chem. 2022, 134, e202202727.
- 31A. R. Jupp, Dalton Trans. 2022, 51, 10681.
- 32L. Rocchigiani, G. Ciancaleoni, C. Zuccaccia, A. Macchioni, J. Am. Chem. Soc. 2014, 136, 112.
- 33For the estimation of FEPA values, a reference proton donor/acceptor couple, ammonium/ammonia, was employed. The choice of this couple is arbitrary and choosing any other reference equilibrium would only linearly offset the values of the descriptor.
- 34T. A. Rokob, A. Hamza, I. Pápai, J. Am. Chem. Soc. 2009, 131, 10701.
- 35J. Greeley, Annu. Rev. Chem. Biomol. 2016, 7, 605.
- 36F. Calle-Vallejo, D. Loffreda, M. T. Koper, P. Sautet, Nat. Chem. 2015, 7, 403.
- 37M. Busch, M. D. Wodrich, C. Corminboeuf, Chem. Sci. 2015, 6, 6754.
- 38R. Laplaza, S. Das, M. Wodrich, C. Corminboeuf, Nat. Protoc. 2022, https://doi.org/10.1038/s41596-022-00726-2.
- 39M. D. Wodrich, B. Sawatlon, E. Solel, S. Kozuch, C. Corminboeuf, ACS Catal. 2019, 9, 5716.
- 40M. D. Wodrich, B. Sawatlon, M. Busch, C. Corminboeuf, Acc. Chem. Res. 2021, 54, 1107.
- 41S. Kozuch, S. Shaik, Acc. Chem. Res. 2011, 44, 101.
- 42J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37.
- 43A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018, 118, 2302.
- 44A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt, J. K. Nørskov, Nat. Mater. 2017, 16, 225.
- 45J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886.
- 46Although required for the absolute prediction of catalytic performance, out-of-cycle resting states such as FLP-CO2 adduct or a classical LA-LB adduct are not considered since it does not affect the (intrinsic) CTFH activity trends shown here.
- 47S. Mummadi, A. Brar, G. Wang, D. Kenefake, R. Diaz, D. K. Unruh, S. Li, C. Krempner, Chem. Eur. J. 2018, 24, 16526.
- 485 and 1 as TDI and TDTS, respectively, imply a thermodynamically driven product release.
- 49Interestingly, this active region is subjected to additional restrictions imposed by the weakest Lewis components (B-Et2Me2 and pyrazine, respectively) in the library.
- 50S. Shyshkanov, T. N. Nguyen, F. M. Ebrahim, K. C. Stylianou, P. J. Dyson, Angew. Chem. Int. Ed. 2019, 58, 5371; Angew. Chem. 2019, 131, 5425.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.